The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] AME(1195hit)

221-240hit(1195hit)

  • Tracing Werewolf Game by Using Extended BDI Model

    Naoyuki NIDE  Shiro TAKATA  

     
    PAPER-Information Network

      Pubricized:
    2017/09/15
      Vol:
    E100-D No:12
      Page(s):
    2888-2896

    The Werewolf game is a kind of role-playing game in which players have to guess other players' roles from their speech acts (what they say). In this game, players have to estimate other players' beliefs and intentions, and try to modify others' intentions. The BDI model is a suitable one for this game, because it explicitly has notions of mental states, i.e. beliefs, desires and intentions. On the other hand, in this game, players' beliefs are not completely known. Consequently, in many cases it is difficult for players to choose a unique strategy; in other words, players frequently have to maintain probabilistic intentions. However, the conventional BDI model does not have the notion of probabilistic mental states. In this paper, we propose an extension of BDI logic that can handle probabilistic mental states and use it to model some situations in the Werewolf game. We also show examples of deductions concerning those situations. We expect that this study will serve as a basis for developing a Werewolf game agent based on BDI logic in the future.

  • Depth Map Estimation Using Census Transform for Light Field Cameras

    Takayuki TOMIOKA  Kazu MISHIBA  Yuji OYAMADA  Katsuya KONDO  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2017/08/02
      Vol:
    E100-D No:11
      Page(s):
    2711-2720

    Depth estimation for a lense-array type light field camera is a challenging problem because of the sensor noise and the radiometric distortion which is a global brightness change among sub-aperture images caused by a vignetting effect of the micro-lenses. We propose a depth map estimation method which has robustness against sensor noise and radiometric distortion. Our method first binarizes sub-aperture images by applying the census transform. Next, the binarized images are matched by computing the majority operations between corresponding bits and summing up the Hamming distance. An initial depth obtained by matching has ambiguity caused by extremely short baselines among sub-aperture images. After an initial depth estimation process, we refine the result with following refinement steps. Our refinement steps first approximate the initial depth as a set of depth planes. Next, we optimize the result of plane fitting with an edge-preserving smoothness term. Experiments show that our method outperforms the conventional methods.

  • Price-Based Power Allocation with Rate Proportional Fairness Constraint in Downlink Non-Orthogonal Multiple Access Systems

    Zi-fu FAN  Chen-chen WEN  Zheng-qiang WANG  Xiao-yu WAN  

     
    LETTER-Communication Theory and Signals

      Vol:
    E100-A No:11
      Page(s):
    2543-2546

    In this letter, we investigate the price-based power allocation with rate proportional fairness constraint in downlink non-orthogonal multiple access (NOMA) systems. The Stackelberg game is utilized to model the interaction between the base station (BS) and users. The revenue maximization problem of the BS is first converted to rate allocation problem, then the optimal rate allocation for each user is obtained by variable substitution. Finally, a price-based power allocation with rate proportional fairness (PAPF) algorithm is proposed based on the relationship between rate and transmit power. Simulation results show that the proposed PAPF algorithm is superior to the previous price-based power allocation algorithm in terms of fairness index and minimum normalized user (MNU) rate.

  • Ball State Based Parallel Ball Tracking and Event Detection for Volleyball Game Analysis

    Xina CHENG  Norikazu IKOMA  Masaaki HONDA  Takeshi IKENAGA  

     
    PAPER-Vision

      Vol:
    E100-A No:11
      Page(s):
    2285-2294

    The ball state tracking and detection technology plays a significant role in volleyball game analysis, whose performance is limited due to the challenges include: 1) the inaccurate ball trajectory; 2) multiple numbers of the ball event category; 3) the large intra-class difference of one event. With the goal of broadcasting supporting for volleyball games which requires a real time system, this paper proposes a ball state based parallel ball tracking and event detection method based on a sequential estimation method such as particle filter. This method employs a parallel process of the 3D ball tracking and the event detection so that it is friendly for real time system implementation. The 3D ball tracking process uses the same models with the past work [8]. For event detection process, a ball event change estimation based multiple system model, a past trajectory referred hit point likelihood and a court-line distance feature based event type detection are proposed. First, the multiple system model transits the ball event state, which consists the event starting time and the event type, through three models dealing with different ball motion situations in the volleyball game, such as the motion keeping and changing. The mixture of these models is decided by estimation of the ball event change estimation. Secondly, the past trajectory referred hit point likelihood avoids the processing time delay between the ball tracking and the event detection process by evaluating the probability of the ball being hit at certain time without using future ball trajectories. Third, the feature of the distance between the ball and the specific court line are extracted to detect the ball event type. Experimental results based on multi-view HDTV video sequences (2014 Inter High School Men's Volleyball Games, Japan), which contains 606 events in total, show that the detection rate reaches 88.61% while the success rate of 3D ball tracking keeps more than 99%.

  • Mitigating Throughput Starvation in Dense WLANs through Potential Game-Based Channel Selection

    Bo YIN  Shotaro KAMIYA  Koji YAMAMOTO  Takayuki NISHIO  Masahiro MORIKURA  Hirantha ABEYSEKERA  

     
    PAPER-Communication Systems

      Vol:
    E100-A No:11
      Page(s):
    2341-2350

    Distributed channel selection schemes are proposed in this paper to mitigate the flow-in-the-middle (FIM) starvation in dense wireless local area networks (WLANs). The FIM starvation occurs when the middle transmitter is within the carrier sense range of two exterior transmitters, while the two exterior transmitters are not within the carrier sense range of each other. Since an exterior transmitter sends a frame regardless of the other, the middle transmitter has a high probability of detecting the channel being occupied. Under heavy traffic conditions, the middle transmitter suffers from extremely low transmission opportunities, i.e., throughput starvation. The basic idea of the proposed schemes is to let each access point (AP) select the channel which has less three-node-chain topologies within its two-hop neighborhood. The proposed schemes are formulated in strategic form games. Payoff functions are designed so that they are proved to be potential games. Therefore, the convergence is guaranteed when the proposed schemes are conducted in a distributed manner by using unilateral improvement dynamics. Moreover, we conduct evaluations through graph-based simulations and the ns-3 simulator. Simulations confirm that the FIM starvation has been mitigated since the number of three-node-chain topologies has been significantly reduced. The 5th percentile throughput has been improved.

  • Rational Proofs against Rational Verifiers

    Keita INASAWA  Kenji YASUNAGA  

     
    PAPER-Cryptography and Information Security

      Vol:
    E100-A No:11
      Page(s):
    2392-2397

    Rational proofs, introduced by Azar and Micali (STOC 2012), are a variant of interactive proofs in which the prover is rational, and may deviate from the protocol for increasing his reward. Guo et al. (ITCS 2014) demonstrated that rational proofs are relevant to delegation of computation. By restricting the prover to be computationally bounded, they presented a one-round delegation scheme with sublinear verification for functions computable by log-space uniform circuits with logarithmic depth. In this work, we study rational proofs in which the verifier is also rational, and may deviate from the protocol for decreasing the prover's reward. We construct a three-message delegation scheme with sublinear verification for functions computable by log-space uniform circuits with polylogarithmic depth in the random oracle model.

  • Distortion Control and Optimization for Lossy Embedded Compression in Video Codec System

    Li GUO  Dajiang ZHOU  Shinji KIMURA  Satoshi GOTO  

     
    PAPER-Coding Theory

      Vol:
    E100-A No:11
      Page(s):
    2416-2424

    For mobile video codecs, the huge energy dissipation for external memory traffic is a critical challenge under the battery power constraint. Lossy embedded compression (EC), as a solution to this challenge, is considered in this paper. While previous studies in lossy EC mostly focused on algorithm optimization to reduce distortion, this work, to the best of our knowledge, is the first one that addresses the distortion control. Firstly, from both theoretical analysis and experiments for distortion optimization, a conclusion is drawn that, at the frame level, allocating memory traffic evenly is a reliable approximation to the optimal solution to minimize quality loss. Then, to reduce the complexity of decoding twice, the distortion between two sequences is estimated by a linear function of that calculated within one sequence. Finally, on the basis of even allocation, the distortion control is proposed to determine the amount of memory traffic according to a given distortion limitation. With the adaptive target setting and estimating function updating in each group of pictures (GOP), the scene change in video stream is supported without adding a detector or retraining process. From experimental results, the proposed distortion control is able to accurately fix the quality loss to the target. Compared to the baseline of negative feedback on non-referred B frames, it achieves about twice memory traffic reduction.

  • Joint Deployment of RGB-D Cameras and Base Stations for Camera-Assisted mmWave Communication System

    Yuta OGUMA  Takayuki NISHIO  Koji YAMAMOTO  Masahiro MORIKURA  

     
    PAPER-Communication Systems

      Vol:
    E100-A No:11
      Page(s):
    2332-2340

    A joint deployment of base stations (BSs) and RGB-depth (RGB-D) cameras for camera-assisted millimeter-wave (mmWave) access networks is discussed in this paper. For the deployment of a wide variety of devices in heterogeneous networks, it is crucial to consider the synergistic effects among the different types of nodes. A synergy between mmWave networks and cameras reduces the power consumption of mmWave BSs through sleep control. A purpose of this work is to optimize the number of nodes of each type, to maximize the average achievable rate within the constraint of a predefined total power budget. A stochastic deployment problem is formulated as a submodular optimization problem, by assuming that the deployment of BSs and cameras forms two independent Poisson point processes. An approximate algorithm is presented to solve the deployment problem, and it is proved that a (1-e-1)/2-approximate solution can be obtained for submodular optimization, using a modified greedy algorithm. The numerical results reveal the deployment conditions under which the average achievable rate of the camera-assisted mmWave system is higher than that of a conventional system that does not employ RGB-D cameras.

  • A 10 Gbps D-PHY Transmitter Bridge Chip for FPGA-Based Frame Generator Supporting MIPI DSI of Mobile Display

    Ho-Seong KIM  Pil-Ho LEE  Jin-Wook HAN  Seung-Hun SHIN  Seung-Wuk BAEK  Doo-Ill PARK  Yongkyu SEO  Young-Chan JANG  

     
    BRIEF PAPER

      Vol:
    E100-C No:11
      Page(s):
    1035-1038

    A 10 Gbps transmitter bridge chip including four data lanes, which increases the bandwidth using an 8-to-1 serialization, is proposed for a field-programmable gate array (FPGA)-based frame generator to support the protocol of the D-PHY version 1.2 for the mobile industry processor interface (MIPI) display serial interface (DSI).

  • esVHO: Energy Saving Vertical Handover Extension for Local SDN in Non-Interconnected Environment

    Toan Nguyen DUC  Eiji KAMIOKA  

     
    PAPER

      Pubricized:
    2017/05/16
      Vol:
    E100-B No:11
      Page(s):
    2027-2037

    Wireless technologies that offer high data rate are generally energy-consuming ones while low-energy technologies commonly provide low data rate. Both kinds of technologies have been integrated in a single mobile device for different services. Therefore, if the service does not always require high data rate, the low energy technology, i.e., Bluetooth, can be used instead of the energy-consuming one, i.e., Wi-Fi, for saving energy. It is obvious that energy savings are maximized by turning the unused technology off. However, when active sessions of ongoing services migrate between different technologies, the network-layer connectivity must be maintained, or a vertical handover (VHO) between different networks is required. Moreover, when the networks are not interconnected, the VHO must be fully controlled by the device itself. The device typically navigates traffic through the firmware of the wireless network interface cards (WNIC) using their drivers, which are dependent on the vendors. To control the traffic navigation between WNICs without any modification of the WNICs' drivers, Software-Defined Networking (SDN) can be applied locally on the mobile device, the so called local SDN. In the local SDN architecture, a local SDN controller (SDNC) is used to control a virtual OpenFlow switch, which turns WNICs into its switch ports. Although the SDNC can navigate the traffic, it lacks the global view of the network topology. Hence, to correctly navigate traffic in a VHO process, an extended SDN controller (extSDNC) was proposed in a previous work. With the extSDNC, the SDNC can perform VHO based on a link layer trigger but with a significant packet loss rate. Therefore, in this paper, a framework named esVHO is proposed that executes VHO at the network layer to reduce the packet loss rate and reduce energy consumption. Experiments on VHO performance prove that esVHO can reduce the packet loss rate considerably. Moreover, the results of an energy saving experiment show that esVHO performs high energy saving up to 4.89 times compared to the others.

  • MFD Measurement of a Six-Mode Fiber with Low-Coherence Digital Holography Open Access

    Yuta WAKAYAMA  Hidenori TAGA  Takehiro TSURITANI  

     
    INVITED PAPER

      Pubricized:
    2017/04/20
      Vol:
    E100-B No:10
      Page(s):
    1734-1739

    This paper presents an application of low-coherence interferometry for measurement of mode field diameters (MFDs) of a few-mode fiber and shows its performance compared with another method using a mode multiplexer. We found that the presented method could measure MFDs in a few-mode fiber even without any special mode multiplexers.

  • Hierarchical-Masked Image Filtering for Privacy-Protection

    Takeshi KUMAKI  Takeshi FUJINO  

     
    PAPER-Privacy, anonymity, and fundamental theory

      Pubricized:
    2017/07/21
      Vol:
    E100-D No:10
      Page(s):
    2327-2338

    This paper presents a hierarchical-masked image filtering method for privacy-protection. Cameras are widely used for various applications, e.g., crime surveillance, environment monitoring, and marketing. However, invasion of privacy has become a serious social problem, especially regarding the use of surveillance cameras. Many surveillance cameras point at many people; thus, a large amount of our private information of our daily activities are under surveillance. However, several surveillance cameras currently on the market and related research often have a complicated or institutional masking privacy-protection functionality. To overcome this problem, a Hierarchical-Masked image Filtering (HMF) method is proposed, which has unmaskable (mask reversal) capability and is applicable to current surveillance camera systems for privacy-information protection and can satisfy privacy-protection related requirements. This method has five main features: unmasking of the original image from only the masked image and a cipher key, hierarchical-mask level control using parameters for the length of a pseudorandom number, robustness against malicious attackers, fast processing on an embedded processor, and applicability of mask operation to current surveillance camera systems. Previous studies have difficulty in providing these features. To evaluate HMF on actual equipment, an HMF-based prototype system is developed that mainly consists of a USB web camera, ultra-compact single board computer, and notebook PC. Through experiments, it is confirmed that the proposed method achieves mask level control and is robust against attacks. The increase in processing time of the HMF-based prototype system compared with a conventional non-masking system is only about 1.4%. This paper also reports on the comparison of the proposed method with conventional privacy protection methods and favorable responses of people toward the HMF-based prototype system both domestically and abroad. Therefore, the proposed HMF method can be applied to embedded systems such as those equipped with surveillance cameras for protecting privacy.

  • A Genetic Algorithm for Packing CAN FD Frame with Real-Time Constraints

    Shan DING  Gang ZENG  Ryo KURACHI  Ruifeng HUANG  

     
    PAPER-Software System

      Pubricized:
    2017/07/18
      Vol:
    E100-D No:10
      Page(s):
    2505-2514

    As a next-generation CAN (Controller Area Network), CAN FD (CAN with flexible data rate) has attracted much attention recently. However, how to use the improved bus bandwidth efficiently in CAN FD is still an issue. Contrasting with existing methods using greedy approximate algorithms, this paper proposes a genetic algorithm for CAN FD frame packing. It tries to minimize the bandwidth utilization by considering the different periods of signals when packing them in the same frame. Moreover, it also checks the schedulability of packed frames to guarantee the real-time constraints of each frame and proposed a merging algorithm to improve the schedulability for signal set with high bus load. Experimental results validate that the proposed algorithm can achieve significantly less bandwidth utilization and improved schedulability than existing methods for a given set of signals.

  • Identification of Time-Varying Parameters of Hybrid Dynamical System Models and Its Application to Driving Behavior

    Thomas WILHELEM  Hiroyuki OKUDA  Tatsuya SUZUKI  

     
    PAPER-Systems and Control

      Vol:
    E100-A No:10
      Page(s):
    2095-2105

    This paper presents a novel identification method for hybrid dynamical system models, where parameters have stochastic and time-varying characteristics. The proposed parameter identification scheme is based on a modified implementation of particle filtering, together with a time-smoothing technique. Parameters of the identified model are considered as time-varying random variables. Parameters are identified independently at each time step, using the Bayesian inference implemented as an iterative particle filtering method. Parameters time dynamics are smoothed using a distribution based moving average technique. Modes of the hybrid system model are handled independently, allowing any type of nonlinear piecewise model to be identified. The proposed identification scheme has low computation burden, and it can be implemented for online use. Effectiveness of the scheme is verified by numerical experiments, and an application of the method is proposed: analysis of driving behavior through identified time-varying parameters.

  • An Application Framework for Smart Education System Based on Mobile and Cloud Systems

    Toru KOBAYASHI  Kenichi ARAI  Hiroyuki SATO  Shigeaki TANIMOTO  Atsushi KANAI  

     
    PAPER

      Pubricized:
    2017/07/21
      Vol:
    E100-D No:10
      Page(s):
    2399-2410

    Smart education environment, that is a learning environment utilizing the Information Communication Technology (ICT), has attracted a great deal of attention. In order to expand this environment, we need a system that can establish the learning environment armed cloud systems to reduce a significant strain on teaching staff. The important issue for such system is extensibility because the system should be adapted to many kinds of original digital learning material with minimum modification. Therefore, this paper proposes “An Application Framework for Smart Education System: SES Framework”. In this Smart Education System, multi-aspect information concerning to a technical term embedded in the original digital learning material can be retrieved from different social media automatically. They can be also displayed on multi-screen devices according to user's operation. It is implemented based on “Transforming Model” which enables the migration of the original digital learning material to the smart education environment. It also has an easy operation flow for trainees named “three-step selection flow”. SES Framework derived from Model-View-Controller (MVC) pattern is based on the system architecture that enables triple mashup against the original digital learning material, external social media, and screen devices in front of users. All these functionalities have been implemented on cloud systems. We show SES Framework through the implementation example. We also demonstrate the effectiveness of SES Framework by indicating the system modification case study.

  • Fast Parameter Estimation for Polyphase P Codes Modulated Radar Signals

    Qi ZHANG  Pei WANG  Jun ZHU  Bin TANG  

     
    LETTER-Digital Signal Processing

      Vol:
    E100-A No:10
      Page(s):
    2162-2166

    A fast parameter estimation method with a coarse estimation and a fine estimation for polyphase P coded signals is proposed. For a received signal with N sampling points, the proposed method has an improved performance when the signal-to-noise ratio (SNR) is larger than 2dB and a lower computational complexity O(N logs N) compared with the latest time-frequency rate estimation method whose computational complexity is O(N2).

  • Effect of Magnetic Blow-Out and Air Flow on Break Arcs Occurring between Silver Electrical Contacts with Copper Runners

    Haruki MIYAGAWA  Junya SEKIKAWA  

     
    PAPER

      Vol:
    E100-C No:9
      Page(s):
    709-715

    Arc runners are fixed on silver electrical contacts. Break arcs are generated between the contacts in a 450VDC circuit. Break arcs are magnetically blown-out and air is blown to the break arcs. The air flow was not used to our previous reports with runners. Circuit current when contacts are closed is 10A. Flow rate of air Q is changed from 1 to 10L/min. Supply voltage E is changed from 200V to 450V. The following results are shown. Arc duration D tends to decrease with increasing flow rate Q. The number of reignitions N increases with increasing supply voltage E for each flow rate Q. The number of reignitions is the least when the flow rate Q is 2L/min.

  • Analysis of Rotational Motion of Break Arcs Rotated by Radial Magnetic Field in a 48VDC Resistive Circuit

    Jun MATSUOKA  Junya SEKIKAWA  

     
    BRIEF PAPER

      Vol:
    E100-C No:9
      Page(s):
    732-735

    Break arcs are rotated with a radial magnetic field formed by a permanent magnet embedded in a fixed contact. The break arcs are generated in a 48VDC resistive circuit. The circuit current is 10A when the contacts are closed. The polarity of the fixed contact in which the magnet is embedded is changed. The rotational radius and the difference of position between the cathode and anode spots are investigated. The following results are obtained. The cathode spot is moved more easily than the anode spot by the radial magnetic field. The rotational radius of the break arcs is affected by the Lorentz force that is caused by the circumferential component of the arc current and the axial component of the magnetic field. The circumferential component of the arc current is caused by the difference of the positions of the rotating cathode and anode spots.

  • Parameterized L1-Minimization Algorithm for Off-the-Gird Spectral Compressive Sensing

    Wei ZHANG  Feng YU  

     
    LETTER-Digital Signal Processing

      Vol:
    E100-A No:9
      Page(s):
    2026-2030

    Spectral compressive sensing is a novel approach that enables extraction of spectral information from a spectral-sparse signal, exclusively from its compressed measurements. Thus, the approach has received considerable attention from various fields. However, standard compressive sensing algorithms always require a sparse signal to be on the grid, whose spacing is the standard resolution limit. Thus, these algorithms severely degenerate while handling spectral compressive sensing, owing to the off-the-grid issue. Some off-the-grid algorithms were recently proposed to solve this problem, but they are either inaccurate or computationally expensive. In this paper, we propose a novel algorithm named parameterized ℓ1-minimization (PL1), which can efficiently solves the off-the-grid spectral estimation problem with relatively low computational complexity.

  • Generic Transformation for Signatures in the Continual Leakage Model

    Yuyu WANG  Keisuke TANAKA  

     
    PAPER

      Vol:
    E100-A No:9
      Page(s):
    1857-1869

    In ProvSec 2014, Wang and Tanaka proposed a transformation which converts weakly existentially unforgeable (wEUF) signature schemes into strongly existentially unforgeable (sEUF) ones in the bounded leakage model. To obtain the construction, they combined leakage resilient (LR) chameleon hash functions with the Generalised Boneh-Shen-Waters (GBSW) transformation proposed by Steinfeld, Pieprzyk, and Wang. However, their transformation cannot be used in a more realistic model called continual leakage model since secret keys of LR chameleon hash functions cannot be updated. In this paper, we propose a transformation which can convert wEUF signature schemes into sEUF ones in the continual leakage model. To achieve our goal, we give a new definition of continuous leakage resilient (CLR) chameleon hash function and construct it based on the CLR signature scheme proposed by Malkin, Teranishi, Vahlis, and Yung. Although our CLR chameleon hash functions satisfy the property of strong collision-resistance, due to the existence of the updating algorithm, an adversary may find the kind of collisions such that messages are the same but randomizers are different. Hence, we cannot combine our chameleon hash functions with the GBSW transformation directly, or the sEUF security of the transformed signature schemes cannot be achieved. To solve this problem, we improve the original GBSW transformation by making use of the Groth-Sahai proof system and then combine it with CLR chameleon hash functions.

221-240hit(1195hit)