The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] ATI(18690hit)

5561-5580hit(18690hit)

  • Selection of Component Carriers Using Centralized Baseband Pooling for LTE-Advanced Heterogeneous Networks

    Hiroyuki SEKI  Takaharu KOBAYASHI  Dai KIMURA  

     
    PAPER

      Vol:
    E96-B No:6
      Page(s):
    1288-1296

    Bandwidth expansion in Long Term Evolution (LTE)-Advanced is supported via carrier aggregation (CA), which aggregates multiple component carriers (CCs) to accomplish very high data rate communications. Heterogeneous networks (HetNets), which set pico-base stations in macrocells are also a key feature of LTE-Advanced to achieve substantial gains in coverage and capacity compared to macro-only cells. When CA is applied in HetNets, transmission on all CCs may not always be the best solution due to the extremely high levels of inter-cell interference experienced by HetNets. Activated CCs that are used for transmission should be selected depending on inter-cell interference conditions and the traffic offered in the cells. This paper presents a scheme to select CCs through centralized control assuming a centralized baseband unit (C-BBU) configuration. A C-BBU involves pooling tens or hundreds of baseband resources where one baseband resource can be connected to any CC installed in remote radio heads (RRHs) via optical fibers. Fewer baseband resources can be prepared in a C-BBU than those of CCs in RRHs to reduce the cost of equipment. Our proposed scheme selects the activated CCs by considering the user equipment (UE) assigned to CCs under the criterion of maximizing the proportional fairness (PF) utility function. Convex optimization using the Karush-Kuhn-Tucker (KKT) conditions is applied to solve the resource allocation ratio that enables user throughput to be estimated. We present results from system level simulations of the downlink to demonstrate that the proposed algorithm to select CCs can outperform the conventional one that selects activated CCs based on the received signal strength. We also demonstrate that our proposed algorithm to select CCs can provide a good balance in traffic load between CCs and achieve better user throughput with fewer baseband resources.

  • A Reduced-Complexity Heterodyne Multiband MIMO Receiver with Estimation of Analog Devices Imperfection in a Baseband Feedback Loop

    Tomoya OHTA  Satoshi DENNO  Masahiro MORIKURA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E96-B No:6
      Page(s):
    1540-1550

    This paper proposes a reduced-complexity multiband multiple-input multiple-output (MIMO) receiver that can be used in cognitive radios. The proposed receiver uses heterodyne reception implemented with a wide-passband band-pass filter in the radio frequency (RF) stage. When an RF Hilbert transformer is utilized in the receiver, image-band interference occurs because of the transformer's imperfections. Thus, the imperfection of the Hilbert transformer is corrected in the intermediate frequency (IF) stage to reduce the hardware complexity. First, the proposed receiver estimates the channel impulse response in the presence of the strong image-band interference signals. Next, the coefficients are calculated for the correction of the imperfection at the IF stage, and are fed back to the IF stage through a feedback loop. However, the imperfection caused by the digital-to-analog (D/A) converter and the baseband amplifier in the feedback loop corrupts the coefficients on the way back to the IF stage. Therefore, the proposed receiver corrects the imperfection of the analog devices in the feedback loop. The performance of the proposed receiver is verified by using computer simulations. The proposed receiver can maintain its performance even in the presence of strong image-band interference signals and imperfection of the analog devices in the feedback loop. In addition, this paper also reveals the condition for rapid convergence.

  • Root Computation in Finite Fields

    Ryuichi HARASAWA  Yutaka SUEYOSHI  Aichi KUDO  

     
    PAPER

      Vol:
    E96-A No:6
      Page(s):
    1081-1087

    We consider the computation of r-th roots in finite fields. For the computation of square roots (i.e., the case of r=2), there are two typical methods: the Tonelli-Shanks method [7],[10] and the Cipolla-Lehmer method [3],[5]. The former method can be extended to the case of r-th roots with r prime, which is called the Adleman-Manders-Miller method [1]. In this paper, we generalize the Cipolla-Lehmer method to the case of r-th roots in Fq with r prime satisfying r | q-1, and provide an efficient computational procedure of our method. Furthermore, we implement our method and the Adleman-Manders-Miller method, and compare the results.

  • Lower Bounds on the Aperiodic Hamming Correlations of Frequency Hopping Sequences

    Xing LIU  Daiyuan PENG  Xianhua NIU  Fang LIU  

     
    PAPER-Spread Spectrum Technologies and Applications

      Vol:
    E96-A No:6
      Page(s):
    1445-1450

    In order to evaluate the goodness of frequency hopping (FH) sequence design, the periodic Hamming correlation function is used as an important measure. But aperiodic Hamming correlation of FH sequences matters in real applications, while it received little attraction in the literature compared with periodic Hamming correlation. In this paper, the new aperiodic Hamming correlation lower bounds for FH sequences, with respect to the size of the frequency slot set, the sequence length, the family size, the maximum aperiodic Hamming autocorrelation and the maximum aperiodic Hamming crosscorrelation are established. The new aperiodic bounds are tighter than the Peng-Fan bounds. In addition, the new bounds include the second powers of the maximum aperiodic Hamming autocorrelation and the maximum aperiodic Hamming crosscorrelation but the Peng-Fan bounds do not include them. For the given sequence length, the family size and the frequency slot set size, the values of the maximum aperiodic Hamming autocorrelation and the maximum aperiodic Hamming crosscorrelation are inside of an ellipse which is given by the new aperiodic bounds.

  • Test Generation for Delay Faults on Clock Lines under Launch-on-Capture Test Environment

    Yoshinobu HIGAMI  Hiroshi TAKAHASHI  Shin-ya KOBAYASHI  Kewal K. SALUJA  

     
    PAPER-Dependable Computing

      Vol:
    E96-D No:6
      Page(s):
    1323-1331

    This paper deals with delay faults on clock lines assuming the launch-on-capture test. In this realistic fault model, the amount of delay at the FF driven by the faulty clock line is such that the scan shift operation can perform correctly even in the presence of a fault, but during the system clock operation, capturing functional value(s) at faulty FF(s), i.e. FF(s) driven by the clock with delay, is delayed and correct value(s) may not be captured. We developed a fault simulator that can handle such faults and using this simulator we investigate the relation between the duration of the delay and the difficulty of detecting clock delay faults in the launch-on-capture test. Next, we propose test generation methods for detecting clock delay faults that affect a single or two FFs. Experimental results for benchmark circuits are given in order to establish the effectiveness of the proposed methods.

  • More Precise Analysis of Dynamically Generated String Expressions in Web Applications with Input Validation

    Seikoh NISHITA  

     
    PAPER-Static Analysis

      Vol:
    E96-D No:6
      Page(s):
    1278-1285

    The string analysis is a static analysis of dynamically generated strings in a target program, which is applied to check well-formed string construction in web applications. The string analysis constructs a finite state automaton that approximates a set of possible strings generated for a particular string variable at a program location at runtime. A drawback in the string analysis is imprecision in the analysis result, leading to false positives in the well-formedness checkers. To address the imprecision, this paper proposes an improvement technique of the string analysis to make it perform more precise analysis with respect to input validation in web applications. This paper presents the improvement by annotations representing screening of a set of possible strings, and empirical evaluation with experiments of the improved analyzer on real-world web applications.

  • An Algorithm for Allocating User Requests to Licenses in the OMA DRM System

    Nikolaos TRIANTAFYLLOU  Petros STEFANEAS  Panayiotis FRANGOS  

     
    PAPER-Formal Methods

      Vol:
    E96-D No:6
      Page(s):
    1258-1267

    The Open Mobile Alliance (OMA) Order of Rights Object Evaluation algorithm causes the loss of rights on contents under certain circumstances. By identifying the cases that cause this loss we suggest an algebraic characterization, as well as an ordering of OMA licenses. These allow us to redesign the algorithm so as to minimize the losses, in a way suitable for the low computational powers of mobile devices. In addition we provide a formal proof that the proposed algorithm fulfills its intent. The proof is conducted using the OTS/CafeOBJ method for verifying invariant properties.

  • Partitioning Trees with Supply, Demand and Edge-Capacity

    Masaki KAWABATA  Takao NISHIZEKI  

     
    PAPER

      Vol:
    E96-A No:6
      Page(s):
    1036-1043

    Let T be a given tree. Each vertex of T is either a supply vertex or a demand vertex, and is assigned a positive number, called the supply or demand. Each demand vertex v must be supplied an amount of “power,” equal to the demand of v, from exactly one supply vertex through edges in T. Each edge is assigned a positive number called the capacity. One wishes to partition T into subtrees by deleting edges from T so that each subtree contains exactly one supply vertex whose supply is no less than the sum of all demands in the subtree and the power flow through each edge is no more than capacity of the edge. The “partition problem” is a decision problem to ask whether T has such a partition. The “maximum partition problem” is an optimization version of the partition problem. In this paper, we give three algorithms for the problems. First is a linear-time algorithm for the partition problem. Second is a pseudo-polynomial-time algorithm for the maximum partition problem. Third is a fully polynomial-time approximation scheme (FPTAS) for the maximum partition problem.

  • Optimization of Picocell Locations and Its Parameters in Heterogeneous Networks with Hotspots

    Hidekazu SHIMODAIRA  Gia Khanh TRAN  Kei SAKAGUCHI  Kiyomichi ARAKI  Shoji KANEKO  Noriaki MIYAZAKI  Satoshi KONISHI  Yoji KISHI  

     
    PAPER

      Vol:
    E96-B No:6
      Page(s):
    1338-1347

    In recent years, heterogeneous cellular network (HetNet) topology has been attracting much attention. HetNet, which is a network topology with low power base stations installed inside the cell range of conventional macrocells, can realize network capacity enhancement through the effects of macrocell offloading and cell shrinkage. Due to the heterogeneity nature of HetNet, network designers should carefully consider about the interference management, resource allocation, user association and cell range expansion. These issues have been well studied in recent literatures. However, one of the important problems which has not been well investigated in conventional works is the base station (BS) deployment problem in HetNet. This paper investigates the optimal pico base station deployment in heterogeneous cellular networks especially with the existence of hotspots. In this paper, pico BS locations are optimized together with other network parameters including spectrum splitting ratio and signal-to-interference-noise ratio (SINR) bias for cell range expansion to maximize the total system rate, by considering two spectrum allocation strategies, i.e. spectrum overlapping and spectrum splitting. Numerical results show that the optimized pico BS locations can improve the system rate, the average user rate and outage user rate in HetNet with hotspots.

  • A Modified Pulse Coupled Neural Network with Anisotropic Synaptic Weight Matrix for Image Edge Detection

    Zhan SHI  Jinglu HU  

     
    PAPER-Image

      Vol:
    E96-A No:6
      Page(s):
    1460-1467

    Pulse coupled neural network (PCNN) is a new type of artificial neural network specific for image processing applications. It is a single layer, two dimensional network with neurons which have 1:1 correspondence to the pixels of an input image. It is convenient to process the intensities and spatial locations of image pixels simultaneously by applying a PCNN. Therefore, we propose a modified PCNN with anisotropic synaptic weight matrix for image edge detection from the aspect of intensity similarities of pixels to their neighborhoods. By applying the anisotropic synaptic weight matrix, the interconnections are only established between the central neuron and the neighboring neurons corresponding to pixels with similar intensity values in a 3 by 3 neighborhood. Neurons corresponding to edge pixels and non-edge pixels will receive different input signal from the neighboring neurons. By setting appropriate threshold conditions, image step edges can be detected effectively. Comparing with conventional PCNN based edge detection methods, the proposed modified PCNN is much easier to control, and the optimal result can be achieved instantly after all neurons pulsed. Furthermore, the proposed method is shown to be able to distinguish the isolated pixels from step edge pixels better than derivative edge detectors.

  • Two-Tone Signal Generation for ADC Testing

    Keisuke KATO  Fumitaka ABE  Kazuyuki WAKABAYASHI  Chuan GAO  Takafumi YAMADA  Haruo KOBAYASHI  Osamu KOBAYASHI  Kiichi NIITSU  

     
    PAPER

      Vol:
    E96-C No:6
      Page(s):
    850-858

    This paper describes algorithms for generating low intermodulation-distortion (IMD) two-tone sinewaves, for such as communication application ADC testing, using an arbitrary waveform generator (AWG) or a multi-bit ΣΔ DAC inside an SoC. The nonlinearity of the DAC generates distortion components, and we propose here eight methods to precompensate for the IMD using DSP algorithms and produce low-IMD two-tone signals. Theoretical analysis, simulation, and experimental results all demonstrate the effectiveness of our approach.

  • Novel THP Scheme with Minimum Noise Enhancement for Multi-User MIMO Systems

    Shogo FUJITA  Leonardo LANANTE Jr.  Yuhei NAGAO  Masayuki KUROSAKI  Hiroshi OCHI  

     
    PAPER

      Vol:
    E96-A No:6
      Page(s):
    1340-1347

    In this paper, we propose a modified Tomlinson Harashima precoding (THP) method with less increase of computational complexity for the multi-user MIMO downlink system. The proposed THP scheme minimizes the influence of noise enhancement at the receivers by placing the diagonal weighted filters at both transmitter side and receiver side with square root. Compared to previously proposed non-linear precoding methods including vector perturbation (VP), the proposed THP achieves high BER performance. Furthermore, we show that the proposed THP method is implemented with lower computational complexity than that of existing modified THP and VP in literature.

  • Analysis on Effectiveness of TDM Inter-Cell Interference Coordination in Heterogeneous Networks

    Masashi FUSHIKI  Noriaki MIYAZAKI  Xiaoqiu WANG  Satoshi KONISHI  

     
    PAPER

      Vol:
    E96-B No:6
      Page(s):
    1318-1326

    In order to support the increasing amount of mobile data traffic, Third Generation Partnership Project (3GPP) is actively discusses cell range expansion (CRE) and time domain multiplexing – inter-cell interference coordination (TDM-ICIC). They have shown to be attractive techniques for heterogeneous network (HetNet) deployment where pico base stations (BSs) overlay macro BSs. There are two control schemes of the TDM-ICIC. One, named ZP-scheme, stops radio resource assignments for data traffic in predetermined radio resources in the time domain (subframes). The other, named RP-scheme, maintains the resource assignment whereas it reduces the transmission power at macro BSs at predetermined subframes. In this paper, we clarify the effective ranges of both ZP-scheme and RP-scheme by conducting the system level simulations. Moreover, the appropriate power reduction value at predetermined subframes is also clarified from the difference in the effective range of various power reduction values. The comprehensive evaluation results show that both ZP-scheme and RP-scheme are not effective when the CRE bias value is 0 dB or less. If the CRE bias value is larger than 0 dB, they are effective when the ratio of predetermined subframes in all subframes is set to appropriate values. These values depend on the CRE bias value and power reduction in the predetermined subframes. The effective range is expanded when the power reduction in the predetermined subframes changes with the CRE bias value. Therefore, the effective range of RP-scheme is larger than that of ZP-scheme by setting an appropriate power reduction in the predetermined subframes.

  • Performance Evaluation of LTE-Advanced Heterogeneous Network Deployment Using Carrier Aggregation between Macro and Small Cells

    Takahiro TAKIGUCHI  Kohei KIYOSHIMA  Yuta SAGAE  Kengo YAGYU  Hiroyuki ATARASHI  Sadayuki ABETA  

     
    PAPER

      Vol:
    E96-B No:6
      Page(s):
    1297-1305

    This paper evaluates the downlink performance of an LTE-Advanced (LTE-A) heterogeneous network that uses carrier aggregation (CA) between macro and small cells. The concept of utilizing the CA functionalities in LTE-A is effective in increasing the network capacity in a congested area through raising of the base station density using small cells overlaid onto an existing macro cell network. This concept is also effective in maintaining the mobility performance of user equipment (UE) because handover operation is not applied when entering/leaving a small cell, but component carrier addition/removal is only performed through CA while maintaining the connection to a macro cell. In order to present comprehensive performance evaluations in an LTE-A heterogeneous network with CA, this paper evaluates various performance criteria, e.g., downlink cell throughput and downlink user throughput. According to the obtained simulation results, the total downlink cell throughput achieved in an LTE-A heterogeneous network deployment with CA (four small cells overlaid onto a macro cell sector) exhibits a 3.9-fold improvement compared to a conventional-macro-cell-only network deployment using two frequency bands.

  • Investigation of Inter-Cell Interference Coordination Applying Transmission Power Reduction in Heterogeneous Networks for LTE-Advanced Downlink

    Akihito MORIMOTO  Nobuhiko MIKI  Yukihiko OKUMURA  

     
    PAPER

      Vol:
    E96-B No:6
      Page(s):
    1327-1337

    In Long-Term Evolution (LTE)-Advanced, heterogeneous networks are important to further improve the system throughput per unit area. In heterogeneous network deployment, low power nodes such as picocells are overlaid onto macrocells. In the downlink, the combined usage of inter-cell interference coordination (ICIC), which is a technique that reduces the severe interference from macrocells by reducing the transmission power or stopping the transmission from the macrocells, and cell range expansion (CRE), which is a technique that expands the cell radius of picocells by biasing the received signal power, is very effective in improving the system and cell-edge user throughput. In this paper, we consider two types of ICIC. The first one reduces the transmission power from the macrocells (referred to as reduced power ICIC) and the second one stops the transmission from the macrocells (referred to as zero power ICIC). This paper investigates the impact of the reduction in the transmission power when using reduced power ICIC and the restriction on the modulation scheme caused by the reduction in the transmission power when using reduced power ICIC on the user throughput performance with the CRE offset value as a parameter. In addition, the throughput performance when applying reduced power ICIC is compared to that when applying zero power ICIC. Simulation results show that the user throughput with reduced power ICIC is not sensitive to the protected subframe ratio compared to that with zero power ICIC even if the modulation scheme is restricted to only QPSK in the protected subframes. This indicates that reduced power ICIC is more robust than zero power ICIC for non-optimum protected subframe ratios.

  • Distributed Resource Allocation for Multi-Cell Cognitive Radio Networks Based on Intra-Cell Overlay and Inter-Cell Underlay Spectrum Sharing

    Hailan PENG  Takeo FUJII  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Vol:
    E96-B No:6
      Page(s):
    1566-1576

    In this paper, we consider a multi-cell cognitive radio network (CRN), which overlays a multi-cell primary network. To manage the coexistence, a primary-willingness based coexistent architecture and a novel intra-cell spectrum overlay and inter-cell spectrum underlay sharing method are proposed. In the system, primary base stations will broadcast pilot signals and interference margins to assist the CRN for interference channel evaluation and power control. Subject to the interference margins imposed by the primary network, we define a utility (payoff) function that can represent the secondary system performance while taking into account the co-channel interference among secondary cells. A distributed resource allocation scheme is devised to guarantee the primary performance, and at the same time, maximize the secondary utility without any cooperation among cognitive base stations (CBS). Quality of Service among users is also considered by the scheme such that the instantaneous data rate for each secondary user is larger than a given minimum rate. The resource allocation problem can be decomposed into two subproblems: subchannel allocation and distributed power allocation game (DPAG). We prove that there exists a Nash equilibrium in the DPAG and the equilibrium is unique. Moreover, the DPAG is also Pareto optimal in some constrained environments, that is, no CBS can further improve its performance without impairing others. The proposed algorithm turns out to converge to an equilibrium within a small number of iterations.

  • Low-Complexity ICI Cancellation Based on BEM for OFDM Systems over Doubly Selective Channels

    Suyue LI  Jian XIONG  Peng CHENG  Lin GUI  Youyun XU  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Vol:
    E96-B No:6
      Page(s):
    1588-1596

    One major challenge to implement orthogonal frequency division multiplexing (OFDM) systems over doubly selective channels is the non-negligible intercarrier interference (ICI), which significantly degrades the system performance. Existing solutions to cope with ICI include zero-forcing (ZF), minimum mean square error (MMSE) and other linear or nonlinear equalization methods. However, these schemes fail to achieve a satisfactory tradeoff between performance and computational complexity. To address this problem, in this paper we propose two novel nonlinear ICI cancellation techniques, which are referred to as parallel interference cancelation (PIC) and hybrid interference cancelation (HIC). Taking advantage of the special structure of basis expansion model (BEM) based channel matrices, our proposed schemes enjoy low computational complexity and are capable of cancelling ICI effectively. Moreover, since the proposed schemes can flexibly select different basis functions and be independent of the channel statistics, they are applicable to practical OFDM based systems such as DVB-T2 over doubly selective channels. Theoretical analysis and simulation results both confirm their performance-complexity advantages in comparison with some existing methods.

  • Speaker Adaptation in Sparse Subspace of Acoustic Models

    Yongwon JEONG  

     
    LETTER-Speech and Hearing

      Vol:
    E96-D No:6
      Page(s):
    1402-1405

    I propose an acoustic model adaptation method using bases constructed through the sparse principal component analysis (SPCA) of acoustic models trained in a clean environment. I perform experiments on adaptation to a new speaker and noise. The SPCA-based method outperforms the PCA-based method in the presence of babble noise.

  • Comprehensive Analysis of Heterogeneous Networks with Pico Cells in LTE-Advanced Systems Open Access

    Satoshi KONISHI  

     
    INVITED PAPER

      Vol:
    E96-B No:6
      Page(s):
    1243-1255

    We have seen a rapid increase in mobile data traffic in cellular networks, especially in densely populated areas called “hotspots.” In order to deal with this trend, heterogeneous networks (HetNet) are attracting much attention as a method of effectively accommodating such traffic increases using the Long Term Evolution (LTE)-Advanced system in the 3rd Generation Partnership Project (3GPP). This paper first presents an overview of HetNet, where various wireless nodes can be deployed over the coverage area formed by macro base stations (BSs). Next, various evaluation results are provided for HetNet, where pico BSs (“Pico-BSs”) are deployed over the coverage area of macro BSs (“Macro-BSs”). Then, this paper presents a comprehensive analysis, not only of the effect of overlaying Pico-BSs but also a detailed analyses of the techniques called “cell range expansion (CRE)” and “enhanced inter-cell interference coordination (eICIC)” for facilitating the offloading of user terminals (UEs) from Macro-BSs to Pico-BSs and mitigating interference, respectively, for both downlink and uplink. Noteworthy outcomes found through the comprehensive study are that CRE provides throughput improvements for uplinks, especially for UE connected to Pico-BSs. In addition, this paper demonstrates that CRE contributes to improving downlink throughput especially for low traffic loads. The outcome regarding eICIC is that eICIC provides improvements in total throughput, in spite of the fact that eICIC causes unfairness between UE connected to the Pico-BSs and those with Macro-BSs.

  • Facial Image Super-Resolution Reconstruction Based on Separated Frequency Components

    Hyunduk KIM  Sang-Heon LEE  Myoung-Kyu SOHN  Dong-Ju KIM  Byungmin KIM  

     
    PAPER

      Vol:
    E96-A No:6
      Page(s):
    1315-1322

    Super resolution (SR) reconstruction is the process of fusing a sequence of low-resolution images into one high-resolution image. Many researchers have introduced various SR reconstruction methods. However, these traditional methods are limited in the extent to which they allow recovery of high-frequency information. Moreover, due to the self-similarity of face images, most of the facial SR algorithms are machine learning based. In this paper, we introduce a facial SR algorithm that combines learning-based and regularized SR image reconstruction algorithms. Our conception involves two main ideas. First, we employ separated frequency components to reconstruct high-resolution images. In addition, we separate the region of the training face image. These approaches can help to recover high-frequency information. In our experiments, we demonstrate the effectiveness of these ideas.

5561-5580hit(18690hit)