The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] ATI(18690hit)

6401-6420hit(18690hit)

  • A Novel Resource Allocation Method for DFT-s-OFDMA Systems

    Bin SHENG  Pengcheng ZHU  Xiaohu YOU  Lan CHEN  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E95-B No:4
      Page(s):
    1448-1450

    In this letter, a novel resource allocation method is proposed for Discrete Fourier Transform Spread Orthogonal Frequency Division Multiple Access (DFT-s-OFDMA) systems in Long Term Evolution (LTE). The proposed method is developed based on a minimal metric loss criterion and performs better than the commonly used Recursive Maximum Expansion (RME) method.

  • A Chaos MIMO Transmission Scheme for Channel Coding and Physical-Layer Security

    Eiji OKAMOTO  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E95-B No:4
      Page(s):
    1384-1392

    In recent wireless communication systems, security is ensured mainly in the upper-layer techniques such as a password or a cryptography processing. However, security needs not be restricted to the upper-layer and the addition of physical-layer security also would yield a much more robust system. Therefore, in this paper, we exploit chaos communication and propose a chaos multiple-input multiple-output (MIMO) transmission scheme which achieves physical-layer security and additional channel-coding gain. A chaotic modulation symbol is multiplied to the data to be transmitted at each MIMO antenna to exploit the MIMO antenna diversity, and at the receiver, the joint MIMO detection and chaos decoding is done by maximum likelihood decoding (MLD). The conventional chaos modulation suffers from bit error rate (BER) performance degradation, while the coding gain is obtained in the proposed scheme by the chaos modulation in MIMO. We evaluate the performances of the proposed scheme by an analysis and computer simulations.

  • Distributed Spatial Interference Coordination for IEEE 802.11n Wireless Networks

    Rui CHEN  Changle LI  Jiandong LI  

     
    LETTER

      Vol:
    E95-B No:4
      Page(s):
    1297-1299

    The 802.11n networks with MIMO technique provide a spatial degree of freedom for dealing with co-channel interference. In this letter, our proposed spatial interference coordination scheme is achieved by distributed precoding for the downlink and distributed multi-user detection for the uplink. Simulation results validate the proposed scheme in terms of the downlink and uplink maximum achievable rates at each AP.

  • A Distant Multipath Routing Method for Reliable Wireless Multi-Hop Data Transmission

    Kento TERAI  Daisuke ANZAI  Kyesan LEE  Kentaro YANAGIHARA  Shinsuke HARA  

     
    PAPER

      Vol:
    E95-A No:4
      Page(s):
    723-734

    In a wireless multi-hop network between a source node (S) and a destination node (D), multipath routing in which S redundantly sends the same packets to D through multiple routes at the same time is effective for enhancing the reliability of the wireless data transmission by means of route diversity. However, when applying the multipath routing to a factory where huge robots are moving around, if closer multiple routes are selected, the probability that they are blocked by the robots at the same time becomes higher, so the reliability in terms of packet loss rate cannot be enhanced. In this paper, we propose a multipath routing method which can select physically distant multiple routes without any knowledge on the locations of nodes. We introduce a single metric composed of “the distance between routes” and “the route quality” by means of scalarization in multi-objective maximization problem and apply a genetic algorithm (GA) for searching for adequate routes which maximize the metric. Computer simulation results show that the proposed method can adaptively control the topologies of selected routes between S and D, and effectively reduce the packet loss rates.

  • Study on Resource Optimization for Heterogeneous Networks

    Gia Khanh TRAN  Shinichi TAJIMA  Rindranirina RAMAMONJISON  Kei SAKAGUCHI  Kiyomichi ARAKI  Shoji KANEKO  Noriaki MIYAZAKI  Satoshi KONISHI  Yoji KISHI  

     
    PAPER

      Vol:
    E95-B No:4
      Page(s):
    1198-1207

    This work studies the benefits of heterogeneous cellular networks with overlapping picocells in a large macrocell. We consider three different strategies for resource allocation and cell association. The first model employs a spectrum overlapping strategy with an SINR-based cell association. The second model avoids the interference between macrocell and picocell through a spectrum splitting strategy. Furthermore, picocell range expansion is also considered in this strategy to enable a load balancing between the macrocell and picocells. The last model is a hybrid one, called as fractional spectrum splitting strategy, where spectrum splitting strategy is only applied at the picocell-edge, while the picocell-inner reuses the spectrum of the macrocell. We constructs resource allocation optimization problem for these strategies to maximize the system rate. Our results show that in terms of system rate, all the three strategies outperform the performance of macrocell-only case, which shows the benefit of heterogeneous networks. Moreover, fractional spectrum splitting strategy provides highest system rate at the expense of outage user rate degradation due to inter-macro-pico interference. Spectrum overlapping model provides the second highest system rate gain and also improves outage user rate owing to full spectrum reuse and the benefit of macro diversity, while spectrum splitting model achieves a moderate system rate gain.

  • Signal Separation and Reconstruction Method for Simultaneously Received Multi-System Signals in Flexible Wireless System

    Takayuki YAMADA  Doohwan LEE  Hiroyuki SHIBA  Yo YAMAGUCHI  Kazunori AKABANE  Kazuhiro UEHARA  

     
    PAPER

      Vol:
    E95-B No:4
      Page(s):
    1085-1092

    We previously proposed a unified wireless system called “Flexible Wireless System”. Comprising of flexible access points and a flexible signal processing unit, it collectively receives a wideband spectrum that includes multiple signals from various wireless systems. In cases of simultaneous multiple signal reception, however, reception performance degrades due to the interference among multiple signals. To address this problem, we propose a new signal separation and reconstruction method for spectrally overlapped signals. The method analyzes spectral information obtained by the short-time Fourier transform to extract amplitude and phase values at each center frequency of overlapped signals at a flexible signal processing unit. Using these values enables signals from received radio wave data to be separated and reconstructed for simultaneous multi-system reception. In this paper, the BER performance of the proposed method is evaluated using computer simulations. Also, the performance of the interference suppression is evaluated by analyzing the probability density distribution of the amplitude of the overlapped interference on a symbol of the received signal. Simulation results confirmed the effectiveness of the proposed method.

  • On-Chip Switched Parasitic Capacitors of Sleep Blocks for Resonant Supply Noise Reduction

    Jinmyoung KIM  Toru NAKURA  Hidehiro TAKATA  Koichiro ISHIBASHI  Makoto IKEDA  Kunihiro ASADA  

     
    PAPER

      Vol:
    E95-C No:4
      Page(s):
    643-650

    Switched parasitic capacitors of sleep blocks with a tri-mode power gating structure are implemented to reduce on-chip resonant supply noise in 1.2 V, 65 nm standard CMOS process. The tri-mode power gating structure makes it possible to store charge into the parasitic capacitance of the power gated blocks. The proposed method achieves 53.1% and 57.9% noise reduction for wake-up noise and 130 MHz periodic supply noise, respectively. It also realizes noise cancelling without discharging time before using parasitic capacitors of sleep blocks, and shows 8.4x boost of the effective capacitance value with 2.1% chip area overhead. The proposed method can save the chip area for reducing resonant supply noise more effectively.

  • Extrapolation of Group Proximity from Member Relations Using Embedding and Distribution Mapping

    Hideaki MISAWA  Keiichi HORIO  Nobuo MOROTOMI  Kazumasa FUKUDA  Hatsumi TANIGUCHI  

     
    PAPER-Artificial Intelligence, Data Mining

      Vol:
    E95-D No:3
      Page(s):
    804-811

    In the present paper, we address the problem of extrapolating group proximities from member relations, which we refer to as the group proximity problem. We assume that a relational dataset consists of several groups and that pairwise relations of all members can be measured. Under these assumptions, the goal is to estimate group proximities from pairwise relations. In order to solve the group proximity problem, we present a method based on embedding and distribution mapping, in which all relational data, which consist of pairwise dissimilarities or dissimilarities between members, are transformed into vectorial data by embedding methods. After this process, the distributions of the groups are obtained. Group proximities are estimated as distances between distributions by distribution mapping methods, which generate a map of distributions. As an example, we apply the proposed method to document and bacterial flora datasets. Finally, we confirm the feasibility of using the proposed method to solve the group proximity problem.

  • On the Joint Optimal Power Allocation for DF Relaying and Beamforming Communication Systems

    Feng LU  Chen LIU  Hua-An ZHAO  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E95-B No:3
      Page(s):
    889-897

    This paper considers the power allocation (PA) problem for three-node decode-and-forward (DF) relay communication systems, where the aggregate transmit power constraint is imposed on the source and the relay and the optimization target is to maximize the system's instantaneous information rate. Since the relay is equipped with multiple antennas, the receiver and transmitter beamforming strategies are generally adopted. In this paper, we start by proposing a closed-form solution for the frequency-flat (FF) fading environment, then give a bisection algorithm with low complexity to obtain an optimal solution for the frequency-selective (FS) fading scenario. Finally, simulations validate the proposed methods.

  • Outage Analysis of Cognitive Multihop Networks under Interference Constraints

    Vo Nguyen Quoc BAO  Trung Quang DUONG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E95-B No:3
      Page(s):
    1019-1022

    In this letter, we consider a cognitive radio based multihop network under the spectrum sharing underlay paradigm. By taking into account the interference constraints, we present an exact closed-form expression for outage probability, which is valid for the whole signal-to-noise ratio regime. In addition, some numerical examples of interest that study the effect of the number of hops and/or the interferer threshold on primary users are illustrated and discussed. Numerical results show that multihop systems still offer a considerable gain as compared to direct transmission under the same limit of interference.

  • Outage Probability Analysis of 3G/Ad Hoc Cooperative Network

    Xujie LI  Weiwei XIA  Qiong YANG  Lianfeng SHEN  

     
    LETTER-Network

      Vol:
    E95-B No:3
      Page(s):
    999-1002

    This letter presents an analytical study of outage probability of a 3G/Ad Hoc cooperative network. The considered cooperative network can improve the signal quality so as to decrease the outage probability. Meanwhile, it imposes additional interference on other ongoing users. But on the whole, our analytical study and simulation results show that the cooperative network can still effectively overcome outage event and decrease the average outage probability.

  • Iterative Superimposed Pilot-Assisted Channel Estimation Using Sliding Wiener Filtering for Single-Carrier Block Transmission

    Tetsuya UCHIUMI  Tatsunori OBARA  Kazuki TAKEDA  Fumiyuki ADACHI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E95-B No:3
      Page(s):
    924-932

    In the conventional iterative superimposed pilot-assisted channel estimation (SI-PACE), simple averaging of the instantaneous channel estimates obtained by using the pilot over several single-carrier (SC) blocks (called the frame in this paper) is taken in order to reduce the interference from data symbols. Therefore, the conventional SI-PACE has low tracking ability against fading time variations. To solve the tracking problem, Wiener filtering (WF)-based averaging can be used instead of simple averaging. However, WF incurs high computational complexity. Furthermore, the estimation error of the fading autocorrelation function significantly degrades the channel estimation accuracy. In order to improve the channel estimation accuracy while keeping the computational complexity low, a new iterative SI-PACE using sliding WF (called iterative SWFSI-PACE) is proposed. The channel estimation is done by sliding a WF having a shorter filter size than the measurement interval. The bit error rate (BER) and throughput performances of SC-FDE using iterative SWFSI-PACE are investigated by computer simulation to show that the proposed scheme achieves good BER and throughput performances while keeping the computational complexity low irrespective of the fading rate (or maximum Doppler frequency).

  • Quantum Walks on the Line with Phase Parameters

    Marcos VILLAGRA  Masaki NAKANISHI  Shigeru YAMASHITA  Yasuhiko NAKASHIMA  

     
    PAPER

      Vol:
    E95-D No:3
      Page(s):
    722-730

    In this paper, a study on discrete-time coined quantum walks on the line is presented. Clear mathematical foundations are still lacking for this quantum walk model. As a step toward this objective, the following question is being addressed: Given a graph, what is the probability that a quantum walk arrives at a given vertex after some number of steps? This is a very natural question, and for random walks it can be answered by several different combinatorial arguments. For quantum walks this is a highly non-trivial task. Furthermore, this was only achieved before for one specific coin operator (Hadamard operator) for walks on the line. Even considering only walks on lines, generalizing these computations to a general SU(2) coin operator is a complex task. The main contribution is a closed-form formula for the amplitudes of the state of the walk (which includes the question above) for a general symmetric SU(2) operator for walks on the line. To this end, a coin operator with parameters that alters the phase of the state of the walk is defined. Then, closed-form solutions are computed by means of Fourier analysis and asymptotic approximation methods. We also present some basic properties of the walk which can be deducted using weak convergence theorems for quantum walks. In particular, the support of the induced probability distribution of the walk is calculated. Then, it is shown how changing the parameters in the coin operator affects the resulting probability distribution.

  • Study of the Multiplexing Schemes for COMPASS B1 Signals

    Wei LIU  Yuan HU  Xingqun ZHAN  

     
    LETTER-Navigation, Guidance and Control Systems

      Vol:
    E95-B No:3
      Page(s):
    1027-1030

    With the development of COMPASS system, finding suitable and efficient multiplexing solutions have become important for the system signal design. In this paper, based on the alternative BOC (AltBOC) modulation technique, the multiplexing scheme for COMPASS Phase II B1 signals is proposed. Then, to combine all COMPASS Phase III (CP III) B1 components into a composite signal with constant envelope, the generalized majority voting (GMV) technique is employed based on the characteristics of CP III B1 signals. The proposed multiplexing schemes also provide potential opportunities for GNSS modernization and construction, such as GPS, Galileo, etc.

  • An Improved Sufficient Condition for Reconfiguration of List Edge-Colorings in a Tree

    Takehiro ITO  Kazuto KAWAMURA  Xiao ZHOU  

     
    PAPER

      Vol:
    E95-D No:3
      Page(s):
    737-745

    We study the problem of reconfiguring one list edge-coloring of a graph into another list edge-coloring by changing only one edge color assignment at a time, while at all times maintaining a list edge-coloring, given a list of allowed colors for each edge. Ito, Kamiski and Demaine gave a sufficient condition so that any list edge-coloring of a tree can be transformed into any other. In this paper, we give a new sufficient condition which improves the known one. Our sufficient condition is best possible in some sense. The proof is constructive, and yields a polynomial-time algorithm that finds a transformation between two given list edge-colorings of a tree with n vertices via O(n2) recoloring steps. We remark that the upper bound O(n2) on the number of recoloring steps is tight, because there is an infinite family of instances on paths that satisfy our sufficient condition and whose reconfiguration requires Ω(n2) recoloring steps.

  • A Kind of Optimization Method of Loading Documents in OpenOffice.org

    Yuqing LAN  Li LI  Wenbin ZHOU  

     
    PAPER-Fundamentals of Information Systems

      Vol:
    E95-D No:3
      Page(s):
    778-785

    As a giant in open source community, OpenOffice.org has become the most popular office suite within Linux community. But OpenOffice.org is relatively slow while loading documents. Research shows that the most time consuming part is importing one page of whole document. If there are many pages in a document, the accumulation of time consumed can be astonishing. Therefore, this paper proposes a solution, which has improved the speed of loading documents through asynchronous importing mechanism: a document is not imported as a whole, but only part of the document is imported at first for display, then mechanism in the background is started to asynchronously import the remaining parts, and insert it into the drawing queue of OpenOffice.org for display. In this way, the problem can be solved and users don't have to wait for a long time. Application start-up time testing tool has been used to test the time consumed in loading different pages of documents before and after optimization of OpenOffice.org, then, we adopt the regression theory to analyse the correlation between the page number of documents and the loading time. In addition, visual modeling of the experimental data are acquired with the aid of matlab. An obvious increase in loading speed can be seen after a comparison of the time consumed to load a document before and after the solution is adopted. And then, using Microsoft Office compared with the optimized OpenOffice.org, their loading speeds are almost same. The results of the experiments show the effectiveness of this solution.

  • On Linear-Sized Farthest-Color Voronoi Diagrams

    Sang Won BAE  

     
    PAPER

      Vol:
    E95-D No:3
      Page(s):
    731-736

    Given a collection of k sets consisting of a total of n points in the plane, the distance from any point in the plane to each of the sets is defined to be the minimum among distances to each point in the set. The farthest-color Voronoi diagram is defined as a generalized Voronoi diagram of the k sets with respect to the distance functions for each of the k sets. The combinatorial complexity of the diagram is known to be Θ(kn) in the worst case. This paper initiates a study on farthest-color Voronoi diagrams having O(n) complexity. We introduce a realistic model, which defines a certain class of the diagrams with desirable geometric properties observed. We finally show that the farthest-color Voronoi diagrams under the model have linear complexity.

  • WBC-ALC: A Weak Blocking Coordinated Application-Level Checkpointing for MPI Programs

    Xinhai XU  Xuejun YANG  Yufei LIN  

     
    PAPER-Computer System

      Vol:
    E95-D No:3
      Page(s):
    786-796

    As supercomputers increase in size, the mean time between failures (MTBF) of a system becomes shorter, and the reliability problem of supercomputers becomes more and more serious. MPI is currently the de facto standard used to build high-performance applications, and researches on the fault tolerance methods of MPI are always hot topics. However, due to the characteristics of MPI programs, most current checkpointing methods for MPI programs need to modify the MPI library (even operating system), or implement a complicated protocol by logging lots of messages. In this paper, we carry forward the idea of Application-Level Checkpointing (ALC). Based on the general fact that programmers are familiar with the communication characteristics of applications, we have developed BC-ALC, a new portable blocking coordinated ALC for MPI programs. BC-ALC neither modifies the MPI library (even operating system) nor logs any message. It implements coordination only by the Barrier operations instead of any complicated protocol. Furthermore, in order to reduce the cost of fault-tolerance, we reduce the synchronization range of the barrier, and design WBC-ALC, a weak blocking coordinated ALC utilizing group synchronization instead of global synchronization based on the communication relationship between processes. We also propose a fault-tolerance framework developed on top of WBC-ALC and discuss an implementation of it. Experimental results on NPB3.3-MPI benchmarks validate BC-ALC and WBC-ALC, and show that compared with BC-ALC, the average coordination time and the average backup time of a single checkpoint in WBC-ALC are reduced by 44.5% and 5.7% respectively.

  • A Fast Algorithm for Augmenting Edge-Connectivity by One with Bipartition Constraints

    Tadachika OKI  Satoshi TAOKA  Toshiya MASHIMA  Toshimasa WATANABE  

     
    PAPER

      Vol:
    E95-D No:3
      Page(s):
    769-777

    The k-edge-connectivity augmentation problem with bipartition constraints (kECABP, for short) is defined by “Given an undirected graph G=(V, E) and a bipartition π = {VB, VW} of V with VB ∩ VW = ∅, find an edge set Ef of minimum cardinality, consisting of edges that connect VB and VW, such that G'=(V, E ∪ Ef) is k-edge-connected.” The problem has applications for security of statistical data stored in a cross tabulated table, and so on. In this paper we propose a fast algorithm for finding an optimal solution to (σ + 1)ECABP in O(|V||E| + |V2|log |V|) time when G is σ-edge-connected (σ > 0), and show that the problem can be solved in linear time if σ ∈ {1, 2}.

  • Ant Colony Optimization with Memory and Its Application to Traveling Salesman Problem

    Rong-Long WANG  Li-Qing ZHAO  Xiao-Fan ZHOU  

     
    PAPER-Numerical Analysis and Optimization

      Vol:
    E95-A No:3
      Page(s):
    639-645

    Ant Colony Optimization (ACO) is one of the most recent techniques for solving combinatorial optimization problems, and has been unexpectedly successful. Therefore, many improvements have been proposed to improve the performance of the ACO algorithm. In this paper an ant colony optimization with memory is proposed, which is applied to the classical traveling salesman problem (TSP). In the proposed algorithm, each ant searches the solution not only according to the pheromone and heuristic information but also based on the memory which is from the solution of the last iteration. A large number of simulation runs are performed, and simulation results illustrate that the proposed algorithm performs better than the compared algorithms.

6401-6420hit(18690hit)