We thank Kamata et al. (2023) [1] for their interest in our work [2], and for providing an explanation of the quasi-linear kernel from a viewpoint of multiple kernel learning. In this letter, we first give a summary of the quasi-linear SVM. Then we provide a discussion on the novelty of quasi-linear kernels against multiple kernel learning. Finally, we explain the contributions of our work [2].
Leif Katsuo OXENLØWE Quentin SAUDAN Jasper RIEBESEHL Mujtaba ZAHIDY Smaranika SWAIN
This paper summarizes recent reports on the internet's energy consumption and the internet's benefits on climate actions. It discusses energy-efficiency and the need for a common standard for evaluating the climate impact of future communication technologies and suggests a model that can be adapted to different internet applications such as streaming, online reading and downloading. The two main approaches today are based on how much data is transmitted or how much time the data is under way. The paper concludes that there is a need for a standardized method to estimate energy consumption and CO2 emission related to internet services. This standard should include a method for energy-optimizing future networks, where every Wh will be scrutinized.
Various optical fiber connectors have been developed during the 40 years since optical fiber communications systems were first put into practical use. This paper describes the key technologies for optical connectors and recent technical issues.
Yuichiro NISHIKAWA Shota NISHIJIMA Akira HIRANO
We have proposed autonomous network diagnosis platform for operation of future large capacity and virtualized network, including 5G and beyond 5G services. As for the one candidate of information collection and analyzing function blocks in the platform, we proposed novel optical sensing techniques that utilized tapped raw signal data acquired from digital coherent optical receivers. The raw signal data is captured before various digital signal processing for demodulation. Therefore, it contains various waveform deformation and/or noise as it experiences through transmission fibers. In this paper, we examined to detect two possible failures in transmission lines including fiber bending and optical filter shift by analyzing the above-mentioned raw signal data with the help of machine learning. For the purpose, we have implemented Docker container applications in WhiteBox Cassini to acquire real-time raw signal data. We generated CNN model for the detections in off-line processing and used them for real-time detections. We have confirmed successful detection of optical fiber bend and/or optical filter shift in real-time with high accuracy. Also, we evaluated their tolerance against ASE noise and invented novel approach to improve detection accuracy. In addition to that, we succeeded to detect them even in the situation of simultaneous occurrence of those failures.
Yuto FUJIHARA Asahi SUEYOSHI Alisson RODRIGUES DE PAULA Akihiro MARUTA Ken MISHINA
Quadrature phase-shift keying (QPSK) and 16-quadrature amplitude modulation (16QAM) formats are deployed in inter-data center networks where high transmission capacity and spectral efficiency are required. However, in intra-data center networks, a four-level pulse amplitude modulation (PAM4) format is deployed to satisfy the requirements for a simple and low-cost transceiver configuration. For the seamless and effective connection of such heterogeneous networks without an optical-electrical-optical conversion, an all-optical modulation format conversion technique is required. In this paper, we propose all-optical PAM4 to QPSK and 16QAM modulation format conversions using silicon-rich nitride waveguides. The successful conversions from 50-Gbps-class PAM4 signals to 50-Gbps-class QPSK and 100-Gbps-class 16QAM signals are demonstrated via numerical simulations.
Takahito TANIMURA Riu HIRAI Nobuhiko KIKUCHI
We present our data-collection and deep neural network (DNN)-training scheme for extracting the optical status from signals received by digital coherent optical receivers in fiber-optic networks. The DNN is trained with unlabeled datasets across multiple administrative network domains by combining federated learning and unsupervised learning. The scheme allows network administrators to train a common DNN-based encoder that extracts optical status in their networks without revealing their private datasets. An early-stage proof of concept was numerically demonstrated by simulation by estimating the optical signal-to-noise ratio and modulation format with 64-GBd 16QAM and quadrature phase-shift keying signals.
Tomoyuki KATO Hidenobu MURANAKA Yu TANAKA Yuichi AKIYAMA Takeshi HOSHIDA Shimpei SHIMIZU Takayuki KOBAYASHI Takushi KAZAMA Takeshi UMEKI Kei WATANABE Yutaka MIYAMOTO
Multi-band WDM transmission beyond the C+L-band is a promising technology for achieving larger capacity transmission by a limited number of installed fibers. In addition to the C- and L-band, we can expect to use the S-band as the next band. Although the development of optical components for new bands, particularly transceivers, entails resource dispersion, which is one of the barriers to the realization of multi-band systems, wavelength conversion by transparent all-optical signal processing enables new wavelength bandtransmission using existing components. Therefore, we proposed a transmission system including a new wavelength band such as the S-band and made it possible to use a transceiver for the existing band by performing the whole-band wavelength conversion without using a transceiver for the new band. As a preliminary verification to demonstrate multi-band WDM transmission including S-band, we investigated the application of a novel wavelength converter between C-band and S-band, which consists of periodically poled lithium niobate waveguide, to the proposed system. We first characterized the conversion efficiency and noise figure of the wavelength converter and estimated the transmission performance of the system through the wavelength converter. Using the evaluated wavelength converters and test signals of 64 channels arranged in the C-band at 75-GHz intervals, we constructed an experimental setup for S-band transmission through an 80-km standard single-mode fiber. We then demonstrated error-free transmission of real-time 400-Gb/s DP-16QAM signals after forward error correction decoding. From the experimental results, it was clarified that the wavelength converter which realizes the uniform lossless conversion covering the whole C-band effectively achieves the S-band WDM transmission, and it was verified that the capacity improvement of the multi-band WDM system including the S-band can be expected by applying it in combination with the C+L-band WDM system.
Xiaohu WANG Yubin DUAN Yi WEI Xinyuan CHEN Huang ZHUN Chaohui ZHAO
With the gradually increase of the application of new energy in microgrids, Electric Spring (ES), as a new type of distributed compensation power electronic device has been widely studied. The Generalized Electric Spring (G-ES) is an improved topology, and the space limitation problem in the traditional topology is solved. Because of the mode of G-ES use in the power grid, a reasonable solution to the voltage loss of the critical section feeder is needed. In this paper, the voltage balance equation based on the feedforward compensation coefficient is established, and a two cascade control strategy based on the equation is studied. The first stage of the two cascade control strategy is to use communication means to realize the allocation of feedforward compensation coefficients, and the second stage is to use the coefficients to realize feedforward fixed angle control. Simulation analysis shows that the proposed control strategy does not affect the control accuracy of the critical load (CL), and effectively improves the operational range of the G-ES.
Tu NGUYEN VAN Satoshi YAGITANI Kensuke SHIMIZU Shinjiro NISHI Mitsunori OZAKI Tomohiko IMACHI
A metasurface absorber capable of monitoring two-dimensional (2-d) electric field distributions has been developed, where a matrix of lumped resistors between surface patches formed on a mushroom-type structure works as a 2-d array of short dipole sensors. In this paper absorption and reflection of a spherical wave incident on the metasurface absorber are analyzed by numerical computation by the plane-wave spectrum (PWS) technique using 2-d Fourier analysis. The electromagnetic field of the spherical wave incident on the absorber surface is expanded into a large number of plane waves, for each of which the TE and TM reflection and absorption coefficients are applied. Then by synthesizing all the plane wave fields we obtain the spatial distributions of reflected and absorbed fields. The detailed formulation of the computation is described, and the computed field distributions are compared with those obtained by simulation and actual measurement when the spherical wave from a dipole is illuminated onto a metasurface absorber. It is demonstrated that the PWS technique is effective and efficient in obtaining the accurate field distributions of the spherical wave on and around the absorber. This is useful for evaluating the performance of the metasurface absorber to absorb and measure the spherical wave field distributions around an EM source.
Keishi HANAKAGO Ryo TAKAHASHI Takahiro OHYAMA Fumiyuki ADACHI
In this study, an overloaded large-scale distributed antenna network is considered, for which the number of active users is larger than that of antennas distributed in a base station coverage area (called a cell). To avoid overload, users in each cell are divided into multiple user groups, and, to reduce the computational complexity required for multi-user multiple-input and multiple-output (MU-MIMO), users in each user group are grouped into multiple user clusters so that cluster-wise distributed MU-MIMO can be performed in parallel in each user group. However, as the network size increases, conventional computational methods may not be able to solve combinatorial optimization problems, such as user scheduling and user clustering, which are required for performing cluster-wise distributed MU-MIMO in a finite amount of time. In this study, we apply quantum computing to solve the combinatorial optimization problems of user scheduling and clustering for an overloaded distributed antenna network and propose a quantum computing-based user scheduling and clustering method. The results of computer simulations indicate that as the technology of quantum computers and their related algorithms evolves in the future, the proposed method can realize large-scale dense wireless systems and realize real-time optimization with a short optimization execution cycle.
Satoshi DENNO Tomoya TANIKAWA Yafei HOU
This paper proposes overloaded multiple input multiple output (MIMO) bi-directional communication with physical layer network coding (PLNC) to enhance the transmission speed in heterogeneous wireless multihop networks where the number of antennas on the relay is less than that on the terminals. The proposed overloaded MIMO communication system applies precoding and relay filtering to reduce computational complexity in spite of the transmission speed. An eigenvector-based filter is proposed for the relay filter. Furthermore, we propose a technique to select the best filter among candidates eigenvector-based filters. The performance of the proposed overloaded MIMO bi-directional communication is evaluated by computer simulation in a heterogeneous wireless 2-hop network. The proposed filter selection technique attains a gain of about 1.5dB at the BER of 10-5 in a 2-hop network where 2 antennas and 4 antennas are placed on the relay and the terminal, respectively. This paper shows that 6 stream spatial multiplexing is made possible in the system with 2 antennas on the relay.
In this study, we propose a method for localizing an unknown moving emitter by measuring a sequence of the frequency-of-arrival using a single moving observation platform. Furthermore, we introduce the position and velocity errors of the moving observation platform into the theoretical localization error equation to analyze the effect of these errors on the localization accuracy without Monte-Carlo simulations. The proposed theoretical error equation can propagate toward the time direction; therefore, the theoretical localization error can be evaluated at an arbitral time. We demonstrate that the localization error value obtained by the proposed equation and the RMSE evaluated by the Monte-Carlo simulation sufficiently coincide with one another.
Kaoru SUDO Ryo MIKASE Yoshinori TAGUCHI Koichi TAKIZAWA Yosuke SATO Kazushige SATO Hisao HAYAFUJI Masataka OHIRA
This paper proposes a dual-polarized filtering antenna with extracted-pole unit (EPU) using LTCC substrate. The EPU realizes the high skirt characteristic of the bandpass filter with transmission zeros (TZs) located near the passband without cross coupling. The filtering antenna with EPU is designed and fabricated in 28GHz band for 5G Band-n257 (26.5-29.5GHz). The measured S11 is less than -10.6dB in Band-n257, and the isolation between two ports for dual polarization is greater than 20.0dB. The measured peak antenna gain is 4.0dBi at 28.8GHz and the gain is larger than 2.5dBi in Band-n257. The frequency characteristics of the measured antenna gain shows the high skirt characteristic out of band, which are in good agreement with electromagnetic (EM)-simulated results.
Keisuke KAWAHARA Yohtaro UMEDA Kyoya TAKANO Shinsuke HARA
This paper presents a compact fully-differential distributed amplifier using a coupled inductor. Differential distributed amplifiers are widely required in optical communication systems. Most of the distributed amplifiers reported in the past are single-ended or pseudo-differential topologies. In addition, the differential distributed amplifiers require many inductors, which increases the silicon cost. In this study, we use differentially coupled inductors to reduce the chip area to less than half and eliminate the difficulties in layout design. The challenge in using coupled inductors is the capacitive parasitic coupling that degrades the flatness of frequency response. To address this challenge, the odd-mode image parameters of a differential artificial transmission line are derived using a simple loss-less model. Based on the analytical results, we optimize the dimensions of the inductor with the gradient descent algorithm to achieve accurate impedance matching and phase matching. The amplifier was fabricated in 0.18-µm CMOS technology. The core area of the amplifier is 0.27 mm2, which is 57% smaller than the previous work. Besides, we demonstrated a small group delay variation of ±2.7 ps thanks to the optimization. the amplifier successfully performed 30-Gbps NRZ and PAM4 transmissions with superior jitter performance. The proposed technique will promote the high-density integration of differential traveling wave devices.
Satoshi FUJII Jun FUKUSHIMA Hirotsugu TAKIZAWA
The generation and reduction reaction of magnesium plasma were studied using a cylindrical transverse magnetic-mode applicator in magnetic and electric field modes. By heating Mg powder using the magnetic field mode, plasma was generated with the evaporation of Mg and stably sustained. When the Mg plasma sample was introduced into the reaction zone and exposed to microwave and lamp heating, a reduction reaction of scandium oxide also occurred. The results of this study provide prospects for the development of a larger microwave refining system.
Yuma KAWAMOTO Toki YOSHIOKA Norihiko SHIBATA Daniel HEADLAND Masayuki FUJITA Ryo KOMA Ryo IGARASHI Kazutaka HARA Jun-ichi KANI Tadao NAGATSUMA
We propose a novel silicon diplexer integrated with filters for frequency-division multiplexing in the 300-GHz band. The diplexer consists of a directional coupler formed of unclad silicon wires, a photonic bandgap-based low-pass filter, and a high-pass filter based on frequency-dependent bending loss. These integrated filters are capable of suppressing crosstalk and providing >15dB isolation over 40GHz, which is highly beneficial for terahertz-range wireless communications applications. We have used this diplexer in a simultaneous error-free wireless transmission of 300-GHz and 335-GHz channels at the aggregate data rate of 36Gbit/s.
In this paper, we describe a wavelength-division multiplexing visible-light communication (VLC) system using two colored light-emitting diodes (LEDs) with similar emission wavelengths. A multi-input multi-output signal-separation method using a neural network is proposed to cancel the optical cross chatter caused by the spectral overlap of LEDs. The experimental results demonstrate that signal separation using neural networks can be achieved in wavelength-multiplexed VLC systems with a bit error rate of less than 3.8×10-3 (forward error correction limit). Furthermore, the simulation results reveal that the carrier-to-noise ratio (CNR) is improved by 2dB for the successive interference canceller (SIC) compared to the zero-forcing method.
Wataru KOBAYASHI Shigeru KANAZAWA Takahiko SHINDO Manabu MITSUHARA Fumito NAKAJIMA
We evaluated the energy efficiency per 1-bit transmission of an optical light source on InP substrate to achieve optical interconnection. A semiconductor optical amplifier (SOA) assisted extended reach EADFB laser (AXEL) was utilized as the optical light source to enhance the energy efficiency compared to the conventional electro-absorption modulator integrated with a DFB laser (EML). The AXEL has frequency bandwidth extendibility for operation of over 100Gbit/s, which is difficult when using a vertical cavity surface emitting laser (VCSEL) without an equalizer. By designing the AXEL for low power consumption, we were able to achieve 64-Gbit/s, 1.0pJ/bit and 128-Gbit/s, 1.5pJ/bit operation at 50°C with the transmitter dispersion and eye closure quaternary of 1.1dB.
Yuki ATSUMI Tomoya YOSHIDA Ryosuke MATSUMOTO Ryotaro KONOIKE Youichi SAKAKIBARA Takashi INOUE Keijiro SUZUKI
Indoor free space optical (FSO) communication technology that provides high-speed connectivity to edge users is expected to be introduced in the near future mobile communication system, where the silicon photonics solid-state beam scanning device is a promising tool because of its low cost, long-term reliability, and other beneficial properties. However, the current two-dimensional beam scanning devices using grating coupler arrays have difficulty in increasing the transmission capacity because of bandwidth regulation. To solve the problem, we have introduced a broadband surface optical coupler, “elephant coupler,” which has great potential for combining wavelength and spatial division multiplexing technologies into the beam scanning device, as an alternative to grating couplers. The prototype port-selective silicon beam scanning device fabricated using a 300 mm CMOS pilot line achieved broadband optical beam emission with a 1 dB-loss bandwidth of 40 nm and demonstrated beam scanning using an imaging lens. The device has also exhibited free-space signal transmission of non-return-to-zero on-off-keying signals at 10 Gbps over a wide wavelength range of 60 nm. In this paper, we present an overview of the developed beam scanning device. Furthermore, the theoretical design guidelines for indoor mobile FSO communication are discussed.
Shun TAKAHASHI Taichiro FUKUI Ryota TANOMURA Kento KOMATSU Yoshitaka TAGUCHI Yasuyuki OZEKI Yoshiaki NAKANO Takuo TANEMURA
The optical phased array (OPA) is an emerging non-mechanical device that enables high-speed beam steering by emitting precisely phase-controlled lightwaves from numerous optical antennas. In practice, however, it is challenging to drive all phase shifters on an OPA in a deterministic manner due to the inevitable fabrication-induced phase errors and crosstalk between the phase shifters. In this work, we fabricate a 16-element silicon photonic non-redundant OPA chip with integrated phase monitors and experimentally demonstrate accurate monitoring of the relative phases of light from each optical antenna. Under the beam steering condition, the optical phase retrieved from the on-chip phase monitors varies linearly with the steering angle, as theoretically expected.