The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] CTI(8214hit)

261-280hit(8214hit)

  • GUI System to Support Cardiology Examination Based on Explainable Regression CNN for Estimating Pulmonary Artery Wedge Pressure

    Yuto OMAE  Yuki SAITO  Yohei KAKIMOTO  Daisuke FUKAMACHI  Koichi NAGASHIMA  Yasuo OKUMURA  Jun TOYOTANI  

     
    LETTER-Biocybernetics, Neurocomputing

      Pubricized:
    2022/12/08
      Vol:
    E106-D No:3
      Page(s):
    423-426

    In this article, a GUI system is proposed to support clinical cardiology examinations. The proposed system estimates “pulmonary artery wedge pressure” based on patients' chest radiographs using an explainable regression-based convolutional neural network. The GUI system was validated by performing an effectiveness survey with 23 cardiology physicians with medical licenses. The results indicated that many physicians considered the GUI system to be effective.

  • Functional Connectivity and Small-World Networks in Prion Disease

    Chisho TAKEOKA  Toshimasa YAMAZAKI  Yoshiyuki KUROIWA  Kimihiro FUJINO  Toshiaki HIRAI  Hidehiro MIZUSAWA  

     
    LETTER-Biological Engineering

      Pubricized:
    2022/11/28
      Vol:
    E106-D No:3
      Page(s):
    427-430

    We characterized prion disease by comparing brain functional connectivity network (BFCN), which were constructed by 16-ch scalp-recorded electroencephalograms (EEGs). The connectivity between each pair of nodes (electrodes) were computed by synchronization likelihood (SL). The BFCN was applied to graph theory to discriminate prion disease patients from healthy elderlies and dementia groups.

  • A Simple and Interactive System for Modeling Typical Japanese Castles

    Shogo UMEYAMA  Yoshinori DOBASHI  

     
    LETTER-Computer Graphics

      Pubricized:
    2022/11/08
      Vol:
    E106-D No:2
      Page(s):
    267-270

    We present an interactive modeling system for Japanese castles. We develop an user interface that can generate the fundamental structure of the castle tower consisting of stone walls, turrets, and roofs. By clicking on the screen displaying the 3D space with the mouse, relevant parameters are calculated automatically to generate 3D models of Japanese-style castles. We use characteristic curves that often appear in ancient Japanese architecture for the realistic modeling of the castles. We evaluate the effectiveness of our method by comparing the castle generated by our method with a commercially-available 3D mode of a castle.

  • Device Dependent Information Hiding for Images

    Hiroshi ITO  Tadashi KASEZAWA  

     
    PAPER-Information Network

      Pubricized:
    2022/11/08
      Vol:
    E106-D No:2
      Page(s):
    195-203

    A new method for hiding information in digital images is proposed. Our method differs from existing techniques in that the information is hidden in a mixture of colors carefully tuned on a specific device according to the device's signal-to-luminance (gamma) characteristics. Because these reproduction characteristics differ in general from device to device and even from model to model, the hidden information appears when the cover image is viewed on a different device, and hence the hiding property is device-dependent. To realize this, we modulated a cover image using two identically-looking checkerboard patterns and switched them locally depending on the hidden information. Reproducing these two patterns equally on a different device is difficult. A possible application of our method would be secure printing where an image is allowed to be viewed only on a screen but a warning message appears when it is printed.

  • A Night Image Enhancement Algorithm Based on MDIFE-Net Curve Estimation

    Jing ZHANG  Dan LI  Hong-an LI  Xuewen LI  Lizhi ZHANG  

     
    PAPER-Image Processing and Video Processing

      Pubricized:
    2022/11/04
      Vol:
    E106-D No:2
      Page(s):
    229-239

    In order to solve the low-quality problems such as low brightness, poor contrast, noise interference and color imbalance in night images, a night image enhancement algorithm based on MDIFE-Net curve estimation is presented. This algorithm mainly consists of three parts: Firstly, we design an illumination estimation curve (IEC), which adjusts the pixel level of the low illumination image domain through a non-linear fitting function, maps to the enhanced image domain, and effectively eliminates the effect of illumination loss; Secondly, the DCE-Net is improved, replacing the original Relu activation function with a smoother Mish activation function, so that the parameters can be better updated; Finally, illumination estimation loss function, which combines image attributes with fidelity, is designed to drive the no-reference image enhancement, which preserves more image details while enhancing the night image. The experimental results show that our method can not only effectively improve the image contrast, but also make the details of the target more prominent, improve the visual quality of the image, and make the image achieve a better visual effect. Compared with four existing low illumination image enhancement algorithms, the NIQE and STD evaluation index values are better than other representative algorithms, verify the feasibility and validity of the algorithm, and verify the rationality and necessity of each component design through ablation experiments.

  • A Study of Phase-Adjusting Architectures for Low-Phase-Noise Quadrature Voltage-Controlled Oscillators Open Access

    Mamoru UGAJIN  Yuya KAKEI  Nobuyuki ITOH  

     
    PAPER-Electronic Circuits

      Pubricized:
    2022/08/03
      Vol:
    E106-C No:2
      Page(s):
    59-66

    Quadrature voltage-controlled oscillators (VCOs) with current-weight-average and voltage-weight-average phase-adjusting architectures are studied. The phase adjusting equalizes the oscillation frequency to the LC-resonant frequency. The merits of the equalization are explained by using Leeson's phase noise equation and the impulse sensitivity function (ISF). Quadrature VCOs with the phase-adjusting architectures are fabricated using 180-nm TSMC CMOS and show low-phase-noise performances compared to a conventional differential VCO. The ISF analysis and small-signal analysis also show that the drawbacks of the current-weight-average phase-adjusting and voltage-weight-average phase-adjusting architectures are current-source noise effect and large additional capacitance, respectively. A voltage-average-adjusting circuit with a source follower at its input alleviates the capacitance increase.

  • Development of Electronic Tile for Decorating Walls and 3D Surfaces Open Access

    Makoto OMODANI  Hiroyuki YAGUCHI  Fusako KUSUNOKI  

     
    INVITED PAPER

      Pubricized:
    2022/09/30
      Vol:
    E106-C No:2
      Page(s):
    21-25

    We have proposed and developed e-Tile for wall decoration and ornaments for interior/exterior. A prototype of 2m×2m large energy-saving reflective panel was realized by arraying 400 e-Tiles on a flat plane. Prototypes of cubic displays were also realized by constructing e-Tiles to cubic shape. Artistic display effects and 3D impression could be found in these cubic prototypes. We hope e-Tile is a promising solution to extend the application field of e-Paper to decorative use including architectural applications.

  • Flow Processing Optimization with Accelerated Flow Actions on High Speed Programmable Data Plane

    Zhiyuan LING  Xiao CHEN  Lei SONG  

     
    PAPER-Network System

      Pubricized:
    2022/08/10
      Vol:
    E106-B No:2
      Page(s):
    133-144

    With the development of network technology, next-generation networks must satisfy many new requirements for network functions and performance. The processing of overlong packet fields is one of the requirements and is also the basis for ID-based routing and content lookup, and packet field addition/deletion mechanisms. The current SDN switches do not provide good support for the processing of overlong fields. In this paper, we propose a series of optimization mechanisms for protocol-oblivious instructions, in which we address the problem of insufficient support for overlong data in existing SDN switches by extending the bit width of instructions and accelerating them using SIMD instruction sets. We also provide an intermediate representation of the protocol-oblivious instruction set to improve the efficiency of storing and reading instruction blocks, and further reduce the execution time of instruction blocks by preprocessing them. The experiments show that our approach improves the performance of overlong data processing by 56%. For instructions involving packet field addition and deletion, the improvement in performance reaches 455%. In normal forwarding scenarios, our solution reduces the packet forwarding latency by around 30%.

  • Quality and Quantity Pair as Trust Metric

    Ken MANO  Hideki SAKURADA  Yasuyuki TSUKADA  

     
    PAPER-Information Network

      Pubricized:
    2022/11/08
      Vol:
    E106-D No:2
      Page(s):
    181-194

    We present a mathematical formulation of a trust metric using a quality and quantity pair. Under a certain assumption, we regard trust as an additive value and define the soundness of a trust computation as not to exceed the total sum. Moreover, we point out the importance of not only soundness of each computed trust but also the stability of the trust computation procedure against changes in trust value assignment. In this setting, we define trust composition operators. We also propose a trust computation protocol and prove its soundness and stability using the operators.

  • Chinese Lexical Sememe Prediction Using CilinE Knowledge

    Hao WANG  Sirui LIU  Jianyong DUAN  Li HE  Xin LI  

     
    PAPER-Language, Thought, Knowledge and Intelligence

      Pubricized:
    2022/08/18
      Vol:
    E106-A No:2
      Page(s):
    146-153

    Sememes are the smallest semantic units of human languages, the composition of which can represent the meaning of words. Sememes have been successfully applied to many downstream applications in natural language processing (NLP) field. Annotation of a word's sememes depends on language experts, which is both time-consuming and labor-consuming, limiting the large-scale application of sememe. Researchers have proposed some sememe prediction methods to automatically predict sememes for words. However, existing sememe prediction methods focus on information of the word itself, ignoring the expert-annotated knowledge bases which indicate the relations between words and should value in sememe predication. Therefore, we aim at incorporating the expert-annotated knowledge bases into sememe prediction process. To achieve that, we propose a CilinE-guided sememe prediction model which employs an existing word knowledge base CilinE to remodel the sememe prediction from relational perspective. Experiments on HowNet, a widely used Chinese sememe knowledge base, have shown that CilinE has an obvious positive effect on sememe prediction. Furthermore, our proposed method can be integrated into existing methods and significantly improves the prediction performance. We will release the data and code to the public.

  • Modal Interval Regression Based on Spline Quantile Regression

    Sai YAO  Daichi KITAHARA  Hiroki KURODA  Akira HIRABAYASHI  

     
    PAPER-Numerical Analysis and Optimization

      Pubricized:
    2022/07/26
      Vol:
    E106-A No:2
      Page(s):
    106-123

    The mean, median, and mode are usually calculated from univariate observations as the most basic representative values of a random variable. To measure the spread of the distribution, the standard deviation, interquartile range, and modal interval are also calculated. When we analyze continuous relations between a pair of random variables from bivariate observations, regression analysis is often used. By minimizing appropriate costs evaluating regression errors, we estimate the conditional mean, median, and mode. The conditional standard deviation can be estimated if the bivariate observations are obtained from a Gaussian process. Moreover, the conditional interquartile range can be calculated for various distributions by the quantile regression that estimates any conditional quantile (percentile). Meanwhile, the study of the modal interval regression is relatively new, and spline regression models, known as flexible models having the optimality on the smoothness for bivariate data, are not yet used. In this paper, we propose a modal interval regression method based on spline quantile regression. The proposed method consists of two steps. In the first step, we divide the bivariate observations into bins for one random variable, then detect the modal interval for the other random variable as the lower and upper quantiles in each bin. In the second step, we estimate the conditional modal interval by constructing both lower and upper quantile curves as spline functions. By using the spline quantile regression, the proposed method is widely applicable to various distributions and formulated as a convex optimization problem on the coefficient vectors of the lower and upper spline functions. Extensive experiments, including settings of the bin width, the smoothing parameter and weights in the cost function, show the effectiveness of the proposed modal interval regression in terms of accuracy and visual shape for synthetic data generated from various distributions. Experiments for real-world meteorological data also demonstrate a good performance of the proposed method.

  • Novel Structure of Single-Shunt Rectifier Circuit with Impedance Matching at Output Filter

    Katsumi KAWAI  Naoki SHINOHARA  Tomohiko MITANI  

     
    PAPER-Microwaves, Millimeter-Waves

      Pubricized:
    2022/08/16
      Vol:
    E106-C No:2
      Page(s):
    50-58

    This study proposes a new structure of a single-shunt rectifier circuit that can reduce circuit loss and improve efficiency over the conventional structure. The proposed structure can provide impedance matching to the measurement system (or receiving antenna) without the use of conventional matching circuits, such as stubs and tapers. The proposed structure can simultaneously perform full-wave rectification and impedance matching by placing a feeding point on the output filter's λ/4 transmission line. We use circuit simulation to compare the RF-DC conversion efficiency and circuit loss of the conventional and proposed structures. The simulation results show that the proposed structure has lower circuit loss and higher RF-DC conversion efficiency than the conventional structure. We fabricate the proposed rectifier circuit using a GaAs Schottky barrier diode. The simulation and measurement results show that the single-shunt rectifier circuit's proposed structure is capable of rectification and impedance matching. The fabricated rectifier circuit's RF-DC conversion efficiency reaches a maximum of 91.0%. This RF-DC conversion efficiency is a world record for 920-MHz band rectifier circuits.

  • Commit-Based Class-Level Defect Prediction for Python Projects

    Khine Yin MON  Masanari KONDO  Eunjong CHOI  Osamu MIZUNO  

     
    PAPER

      Pubricized:
    2022/11/14
      Vol:
    E106-D No:2
      Page(s):
    157-165

    Defect prediction approaches have been greatly contributing to software quality assurance activities such as code review or unit testing. Just-in-time defect prediction approaches are developed to predict whether a commit is a defect-inducing commit or not. Prior research has shown that commit-level prediction is not enough in terms of effort, and a defective commit may contain both defective and non-defective files. As the defect prediction community is promoting fine-grained granularity prediction approaches, we propose our novel class-level prediction, which is finer-grained than the file-level prediction, based on the files of the commits in this research. We designed our model for Python projects and tested it with ten open-source Python projects. We performed our experiment with two settings: setting with product metrics only and setting with product metrics plus commit information. Our investigation was conducted with three different classifiers and two validation strategies. We found that our model developed by random forest classifier performs the best, and commit information contributes significantly to the product metrics in 10-fold cross-validation. We also created a commit-based file-level prediction for the Python files which do not have the classes. The file-level model also showed a similar condition as the class-level model. However, the results showed a massive deviation in time-series validation for both levels and the challenge of predicting Python classes and files in a realistic scenario.

  • A Comparative Study of Data Collection Periods for Just-In-Time Defect Prediction Using the Automatic Machine Learning Method

    Kosuke OHARA  Hirohisa AMAN  Sousuke AMASAKI  Tomoyuki YOKOGAWA  Minoru KAWAHARA  

     
    LETTER

      Pubricized:
    2022/11/11
      Vol:
    E106-D No:2
      Page(s):
    166-169

    This paper focuses on the “data collection period” for training a better Just-In-Time (JIT) defect prediction model — the early commit data vs. the recent one —, and conducts a large-scale comparative study to explore an appropriate data collection period. Since there are many possible machine learning algorithms for training defect prediction models, the selection of machine learning algorithms can become a threat to validity. Hence, this study adopts the automatic machine learning method to mitigate the selection bias in the comparative study. The empirical results using 122 open-source software projects prove the trend that the dataset composed of the recent commits would become a better training set for JIT defect prediction models.

  • Superposition Signal Input Decoding for Lattice Reduction-Aided MIMO Receivers Open Access

    Satoshi DENNO  Koki KASHIHARA  Yafei HOU  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2022/08/01
      Vol:
    E106-B No:2
      Page(s):
    184-192

    This paper proposes a novel approach to low complexity soft input decoding for lattice reduction-aided MIMO receivers. The proposed approach feeds a soft input decoder with soft signals made from hard decision signals generated by using a lattice reduction-aided linear detector. The soft signal is a weighted-sum of some candidate vectors that are near by the hard decision signal coming out from the lattice reduction-aided linear detector. This paper proposes a technique to adjust the weight adapt to the channel for the higher transmission performance. Furthermore, we propose to introduce a coefficient that is used for the weights in order to enhance the transmission performance. The transmission performance is evaluated in a 4×4 MIMO channel. When a linear MMSE filter or a serial interference canceller is used as the linear detector, the proposed technique achieves about 1.0dB better transmission performance at the BER of 10-5 than the decoder fed with the hard decision signals. In addition, the low computational complexity of the proposed technique is quantitatively evaluated.

  • On Optimality of the Round Function of Rocca

    Nobuyuki TAKEUCHI  Kosei SAKAMOTO  Takanori ISOBE  

     
    PAPER-Cryptography and Information Security

      Pubricized:
    2022/07/07
      Vol:
    E106-A No:1
      Page(s):
    45-53

    At ToSC 2021, Sakamoto et al. proposed Rocca, an AES-based encryption scheme, for Beyond 5G applications. They presented a class of round functions that achieved impressive performance in software by improving the design strategy for constructing an efficient AES-based round function that was proposed by Jean and Nikolić at FSE 2016. In this paper, we revisit their design strategy for finding more efficient round functions. We add new requirements further to improve speed of Rocca. Specifically, we focus on the number of temporary registers for updating the round function and search for round functions with the minimum number of required temporary registers. As a result, we find a class of round functions with only one required temporary register, while round function of Rocca requires two temporary registers. We show that new round functions are significantly faster than that of Rocca on the latest Ice Lake and Tiger Lake architectures. We emphasize that, regarding speed, our round functions are optimal among the Rocca class of round functions because the search described in this paper covers all candidates that satisfy the requirements of Rocca.

  • Access Control with Encrypted Feature Maps for Object Detection Models

    Teru NAGAMORI  Hiroki ITO  AprilPyone MAUNGMAUNG  Hitoshi KIYA  

     
    PAPER

      Pubricized:
    2022/11/02
      Vol:
    E106-D No:1
      Page(s):
    12-21

    In this paper, we propose an access control method with a secret key for object detection models for the first time so that unauthorized users without a secret key cannot benefit from the performance of trained models. The method enables us not only to provide a high detection performance to authorized users but to also degrade the performance for unauthorized users. The use of transformed images was proposed for the access control of image classification models, but these images cannot be used for object detection models due to performance degradation. Accordingly, in this paper, selected feature maps are encrypted with a secret key for training and testing models, instead of input images. In an experiment, the protected models allowed authorized users to obtain almost the same performance as that of non-protected models but also with robustness against unauthorized access without a key.

  • CAA-Net: End-to-End Two-Branch Feature Attention Network for Single Image Dehazing

    Gang JIN  Jingsheng ZHAI  Jianguo WEI  

     
    PAPER-Digital Signal Processing

      Pubricized:
    2022/07/21
      Vol:
    E106-A No:1
      Page(s):
    1-10

    In this paper, we propose an end-to-end two-branch feature attention network. The network is mainly used for single image dehazing. The network consists of two branches, we call it CAA-Net: 1) A U-NET network composed of different-level feature fusion based on attention (FEPA) structure and residual dense block (RDB). In order to make full use of all the hierarchical features of the image, we use RDB. RDB contains dense connected layers and local feature fusion with local residual learning. We also propose a structure which called FEPA.FEPA structure could retain the information of shallow layer and transfer it to the deep layer. FEPA is composed of serveral feature attention modules (FPA). FPA combines local residual learning with channel attention mechanism and pixel attention mechanism, and could extract features from different channels and image pixels. 2) A network composed of several different levels of FEPA structures. The network could make feature weights learn from FPA adaptively, and give more weight to important features. The final output result of CAA-Net is the combination of all branch prediction results. Experimental results show that the CAA-Net proposed by us surpasses the most advanced algorithms before for single image dehazing.

  • Construction of Odd-Variable Strictly Almost Optimal Resilient Boolean Functions with Higher Resiliency Order via Modifying High-Meets-Low Technique

    Hui GE  Zepeng ZHUO  Xiaoni DU  

     
    LETTER-Cryptography and Information Security

      Pubricized:
    2022/07/12
      Vol:
    E106-A No:1
      Page(s):
    73-77

    Construction of resilient Boolean functions in odd variables having strictly almost optimal (SAO) nonlinearity appears to be a rather difficult task in stream cipher and coding theory. In this paper, based on the modified High-Meets-Low technique, a general construction to obtain odd-variable SAO resilient Boolean functions without directly using PW functions or KY functions is presented. It is shown that the new class of functions possess higher resiliency order than the known functions while keeping higher SAO nonlinearity, and in addition the resiliency order increases rapidly with the variable number n.

  • On the Crossing Number of a Torus Network

    Antoine BOSSARD  Keiichi KANEKO  Frederick C. HARRIS, JR.  

     
    PAPER-Graphs and Networks

      Pubricized:
    2022/08/05
      Vol:
    E106-A No:1
      Page(s):
    35-44

    Reducing the number of link crossings in a network drawn on the plane such as a wiring board is a well-known problem, and especially the calculation of the minimum number of such crossings: this is the crossing number problem. It has been shown that finding a general solution to the crossing number problem is NP-hard. So, this problem is addressed for particular classes of graphs and this is also our approach in this paper. More precisely, we focus hereinafter on the torus topology. First, we discuss an upper bound on cr(T(2, k)) the number of crossings in a 2-dimensional k-ary torus T(2, k) where k ≥ 2: the result cr(T(2, k)) ≤ k(k - 2) and the given constructive proof lay foundations for the rest of the paper. Second, we extend this discussion to derive an upper bound on the crossing number of a 3-dimensional k-ary torus: cr(T(3, k)) ≤ 2k4 - k3 - 4k2 - 2⌈k/2⌉⌊k/2⌋(k - (k mod 2)) is obtained. Third, an upper bound on the crossing number of an n-dimensional k-ary torus is derived from the previously established results, with the order of this upper bound additionally established for more clarity: cr(T(n, k)) is O(n2k2n-2) when n ≥ k and O(nk2n-1) otherwise.

261-280hit(8214hit)