The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] CTI(8214hit)

221-240hit(8214hit)

  • An Improved BPNN Method Based on Probability Density for Indoor Location

    Rong FEI  Yufan GUO  Junhuai LI  Bo HU  Lu YANG  

     
    PAPER-Positioning and Navigation

      Pubricized:
    2022/12/23
      Vol:
    E106-D No:5
      Page(s):
    773-785

    With the widespread use of indoor positioning technology, the need for high-precision positioning services is rising; nevertheless, there are several challenges, such as the difficulty of simulating the distribution of interior location data and the enormous inaccuracy of probability computation. As a result, this paper proposes three different neural network model comparisons for indoor location based on WiFi fingerprint - indoor location algorithm based on improved back propagation neural network model, RSSI indoor location algorithm based on neural network angle change, and RSSI indoor location algorithm based on depth neural network angle change - to raise accurately predict indoor location coordinates. Changing the action range of the activation function in the standard back-propagation neural network model achieves the goal of accurately predicting location coordinates. The revised back-propagation neural network model has strong stability and enhances indoor positioning accuracy based on experimental comparisons of loss rate (loss), accuracy rate (acc), and cumulative distribution function (CDF).

  • An Improved Real-Time Object Tracking Algorithm Based on Deep Learning Features

    Xianyu WANG  Cong LI  Heyi LI  Rui ZHANG  Zhifeng LIANG  Hai WANG  

     
    PAPER-Object Recognition and Tracking

      Pubricized:
    2022/01/07
      Vol:
    E106-D No:5
      Page(s):
    786-793

    Visual object tracking is always a challenging task in computer vision. During the tracking, the shape and appearance of the target may change greatly, and because of the lack of sufficient training samples, most of the online learning tracking algorithms will have performance bottlenecks. In this paper, an improved real-time algorithm based on deep learning features is proposed, which combines multi-feature fusion, multi-scale estimation, adaptive updating of target model and re-detection after target loss. The effectiveness and advantages of the proposed algorithm are proved by a large number of comparative experiments with other excellent algorithms on large benchmark datasets.

  • Bearing Remaining Useful Life Prediction Using 2D Attention Residual Network

    Wenrong XIAO  Yong CHEN  Suqin GUO  Kun CHEN  

     
    LETTER-Smart Industry

      Pubricized:
    2022/05/27
      Vol:
    E106-D No:5
      Page(s):
    818-820

    An attention residual network with triple feature as input is proposed to predict the remaining useful life (RUL) of bearings. First, the channel attention and spatial attention are connected in series into the residual connection of the residual neural network to obtain a new attention residual module, so that the newly constructed deep learning network can better pay attention to the weak changes of the bearing state. Secondly, the “triple feature” is used as the input of the attention residual network, so that the deep learning network can better grasp the change trend of bearing running state, and better realize the prediction of the RUL of bearing. Finally, The method is verified by a set of experimental data. The results show the method is simple and effective, has high prediction accuracy, and reduces manual intervention in RUL prediction.

  • Epileptic Seizure Prediction Using Convolutional Neural Networks and Fusion Features on Scalp EEG Signals

    Qixin LAN  Bin YAO  Tao QING  

     
    LETTER-Smart Healthcare

      Pubricized:
    2022/05/27
      Vol:
    E106-D No:5
      Page(s):
    821-823

    Epileptic seizure prediction is an important research topic in the clinical epilepsy treatment, which can provide opportunities to take precautionary measures for epilepsy patients and medical staff. EEG is an commonly used tool for studying brain activity, which records the electrical discharge of brain. Many studies based on machine learning algorithms have been proposed to solve the task using EEG signal. In this study, we propose a novel seizure prediction models based on convolutional neural networks and scalp EEG for a binary classification between preictal and interictal states. The short-time Fourier transform has been used to translate raw EEG signals into STFT sepctrums, which is applied as input of the models. The fusion features have been obtained through the side-output constructions and used to train and test our models. The test results show that our models can achieve comparable results in both sensitivity and FPR upon fusion features. The proposed patient-specific model can be used in seizure prediction system for EEG classification.

  • Effectiveness of Feature Extraction System for Multimodal Sensor Information Based on VRAE and Its Application to Object Recognition

    Kazuki HAYASHI  Daisuke TANAKA  

     
    LETTER-Object Recognition and Tracking

      Pubricized:
    2023/01/12
      Vol:
    E106-D No:5
      Page(s):
    833-835

    To achieve object recognition, it is necessary to find the unique features of the objects to be recognized. Results in prior research suggest that methods that use multiple modalities information are effective to find the unique features. In this paper, the overview of the system that can extract the features of the objects to be recognized by integrating visual, tactile, and auditory information as multimodal sensor information with VRAE is shown. Furthermore, a discussion about changing the combination of modalities information is also shown.

  • Local Binary Convolution Based Prior Knowledge of Multi-Direction Features for Finger Vein Verification

    Huijie ZHANG  Ling LU  

     
    LETTER-Pattern Recognition

      Pubricized:
    2023/02/22
      Vol:
    E106-D No:5
      Page(s):
    1089-1093

    The finger-vein-based deep neural network authentication system has been applied widely in real scenarios, such as countries' banking and entrance guard systems. However, to ensure performance, the deep neural network should train many parameters, which needs lots of time and computing resources. This paper proposes a method that introduces artificial features with prior knowledge into the convolution layer. First, it designs a multi-direction pattern base on the traditional local binary pattern, which extracts general spatial information and also reduces the spatial dimension. Then, establishes a sample effective deep convolutional neural network via combination with convolution, with the ability to extract deeper finger vein features. Finally, trains the model with a composite loss function to increase the inter-class distance and reduce the intra-class distance. Experiments show that the proposed methods achieve a good performance of higher stability and accuracy of finger vein recognition.

  • Convolution Block Feature Addition Module (CBFAM) for Lightweight and Fast Object Detection on Non-GPU Devices

    Min Ho KWAK  Youngwoo KIM  Kangin LEE  Jae Young CHOI  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2023/01/24
      Vol:
    E106-D No:5
      Page(s):
    1106-1110

    This letter proposes a novel lightweight deep learning object detector named LW-YOLOv4-tiny, which incorporates the convolution block feature addition module (CBFAM). The novelty of LW-YOLOv4-tiny is the use of channel-wise convolution and element-wise addition in the CBFAM instead of utilizing the concatenation of different feature maps. The model size and computation requirement are reduced by up to 16.9 Mbytes, 5.4 billion FLOPs (BFLOPS), and 11.3 FPS, which is 31.9%, 22.8%, and 30% smaller and faster than the most recent version of YOLOv4-tiny. From the MSCOCO2017 and PASCAL VOC2012 benchmarks, LW-YOLOv4-tiny achieved 40.2% and 69.3% mAP, respectively.

  • Fish Detecting Using YOLOv4 and CVAE in Aquaculture Ponds with a Non-Uniform Strong Reflection Background

    Meng ZHAO  Junfeng WU  Hong YU  Haiqing LI  Jingwen XU  Siqi CHENG  Lishuai GU  Juan MENG  

     
    PAPER-Smart Agriculture

      Pubricized:
    2022/11/07
      Vol:
    E106-D No:5
      Page(s):
    715-725

    Accurate fish detection is of great significance in aquaculture. However, the non-uniform strong reflection in aquaculture ponds will affect the precision of fish detection. This paper combines YOLOv4 and CVAE to accurately detect fishes in the image with non-uniform strong reflection, in which the reflection in the image is removed at first and then the reflection-removed image is provided for fish detecting. Firstly, the improved YOLOv4 is applied to detect and mask the strong reflective region, to locate and label the reflective region for the subsequent reflection removal. Then, CVAE is combined with the improved YOLOv4 for inferring the priori distribution of the Reflection region and restoring the Reflection region by the distribution so that the reflection can be removed. For further improving the quality of the reflection-removed images, the adversarial learning is appended to CVAE. Finally, YOLOV4 is used to detect fishes in the high quality image. In addition, a new image dataset of pond cultured takifugu rubripes is constructed,, which includes 1000 images with fishes annotated manually, also a synthetic dataset including 2000 images with strong reflection is created and merged with the generated dataset for training and verifying the robustness of the proposed method. Comprehensive experiments are performed to compare the proposed method with the state-of-the-art fish detecting methods without reflection removal on the generated dataset. The results show that the fish detecting precision and recall of the proposed method are improved by 2.7% and 2.4% respectively.

  • On the Construction of Variable Strength Orthogonal Arrays

    Qingjuan ZHANG  Shanqi PANG  Yuan LI  

     
    PAPER-Mathematical Systems Science

      Pubricized:
    2022/09/30
      Vol:
    E106-A No:4
      Page(s):
    683-688

    Variable strength orthogonal array, as a special form of variable strength covering array, plays an important role in computer software testing and cryptography. In this paper, we study the construction of variable strength orthogonal arrays with strength two containing strength greater than two by Galois field and construct some variable strength orthogonal arrays with strength l containing strength greater than l by Fan-construction.

  • Multitarget 2-D DOA Estimation Using Wideband LFMCW Signal and Triangle Array Composed of Three Receiver Antennas

    Wentao ZHANG  Chen MIAO  Wen WU  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2022/10/17
      Vol:
    E106-B No:4
      Page(s):
    307-316

    Direction of arrival (DOA) estimation has been a primary focus of research for many years. Research on DOA estimation continues to be immensely popular in the fields of the internet of things, radar, and smart driving. In this paper, a simple new two-dimensional DOA framework is proposed in which a triangular array is used to receive wideband linear frequency modulated continuous wave signals. The mixed echo signals from various targets are separated into a series of single-tone signals. The unwrapping algorithm is applied to the phase difference function of the single-tone signals. By using the least-squares method to fit the unwrapped phase difference function, the DOA information of each target is obtained. Theoretical analysis and simulation demonstrate that the framework has the following advantages. Unlike traditional phase goniometry, the framework can resolve the trade-off between antenna spacing and goniometric accuracy. The number of detected targets is not limited by the number of antennas. Moreover, the framework can obtain highly accurate DOA estimation results.

  • A Beam Search Method with Adaptive Beam Width Control Based on Area Size for Initial Access

    Takuto ARAI  Daisei UCHIDA  Tatsuhiko IWAKUNI  Shuki WAI  Naoki KITA  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2022/10/03
      Vol:
    E106-B No:4
      Page(s):
    359-366

    High gain antennas with narrow-beamforming are required to compensate for the high propagation loss expected in high frequency bands such as the millimeter wave and sub-terahertz wave bands, which are promising for achieving extremely high speeds and capacity. However using narrow-beamforming for initial access (IA) beam search in all directions incurs an excessive overhead. Using wide-beamforming can reduce the overhead for IA but it also shrinks the coverage area due to the lower beamforming gain. Here, it is assumed that there are some situations in which the required coverage distance differs depending on the direction from the antenna. For example, the distance to an floor for a ceiling-mounted antenna varies depending on the direction, and the distance to the obstruction becomes the required coverage distance for an antenna installation design that assumes line-of-sight. In this paper, we propose a novel IA beam search scheme with adaptive beam width control based on the distance to shield obstacles in each direction. Simulations and experiments show that the proposed method reduces the overhead by 20%-50% without shrinking the coverage area in shield environments compared to exhaustive beam search with narrow-beamforming.

  • Band Characteristics of a Polarization Splitter with Circular Cores and Hollow Pits

    Midori NAGASAKA  Taiki ARAKAWA  Yutaro MOCHIDA  Kazunori KAMEDA  Shinichi FURUKAWA  

     
    PAPER

      Pubricized:
    2022/10/17
      Vol:
    E106-C No:4
      Page(s):
    127-135

    In this study, we discuss a structure that realizes a wideband polarization splitter comprising fiber 1 with a single core and fiber 2 with circular pits, which touch the top and bottom of a single core. The refractive index profile of the W type was adopted in the core of fiber 1 to realize the wideband. We compared the maximum bandwidth of BW-15 (bandwidth at an extinction ratio of -15dB) for the W type obtained in this study with those (our previous results) of BW-15 for the step and graded types with cores and pits at the same location; this comparison clarified that the maximum bandwidth of BW-15 for the W type is 5.22 and 4.96 times wider than those of step and graded types, respectively. Furthermore, the device length at the maximum bandwidth improved, becoming slightly shorter. The main results of the FPS in this study are all obtained by numerical analysis based on our proposed MM-DM (a method that combines the multipole method and the difference method for the inhomogeneous region). Our MM-DM is a quite reliable method for high accuracy analysis of the FPS composed of inhomogeneous circular regions.

  • A 28GHz High-Accuracy Phase and Amplitude Detection Circuit for Dual-Polarized Phased-Array Calibration Open Access

    Yudai YAMAZAKI  Joshua ALVIN  Jian PANG  Atsushi SHIRANE  Kenichi OKADA  

     
    PAPER-Electronic Circuits

      Pubricized:
    2022/10/13
      Vol:
    E106-C No:4
      Page(s):
    149-156

    This article presents a 28GHz high-accuracy phase and amplitude detection circuit for dual-polarized phased-array calibration. With dual-polarized calibration scheme, external LO signal is not required for calibration. The proposed detection circuit detects phase and amplitude independently, using PDC and ADC. By utilizing a 28GHz-to-140kHz downconversion scheme, the phase and amplitude are detected more accurately. In addition, reference signal for PDC and ADC is generated from 28GHz LO signal with divide-by-6 dual-step-mixing injection locked frequency divider (ILFD). This ILFD achieves 24.5-32.5GHz (28%) locking range with only 3.0mW power consumption and 0.01mm2 area. In the measurement, the detection circuit achieves phase and amplitude detections with RMS errors of 0.17degree and 0.12dB, respectively. The total power consumption of the proposed circuit is 59mW with 1-V supply voltage.

  • Influence Propagation Based Influencer Detection in Online Forum

    Wen GU  Shohei KATO  Fenghui REN  Guoxin SU  Takayuki ITO  Shinobu HASEGAWA  

     
    PAPER

      Pubricized:
    2022/11/07
      Vol:
    E106-D No:4
      Page(s):
    433-442

    Influential user detection is critical in supporting the human facilitator-based facilitation in the online forum. Traditional approaches to detect influential users in the online forum focus on the statistical activity information such as the number of posts. However, statistical activity information cannot fully reflect the influence that users bring to the online forum. In this paper, we propose to detect the influencers from the influence propagation perspective and focus on the influential maximization (IM) problem which aims at choosing a set of users that maximize the influence propagation from the entire social network. An online forum influence propagation network (OFIPN) is proposed to model the influence from an individual user perspective and influence propagation between users, and a heuristic algorithm that is proposed to find influential users in OFIPN. Experiments are conducted by simulations with a real-world social network. Our empirical results show the effectiveness of the proposed algorithm.

  • Home Activity Recognition by Sounds of Daily Life Using Improved Feature Extraction Method

    João Filipe PAPEL  Tatsuji MUNAKA  

     
    PAPER

      Pubricized:
    2022/08/23
      Vol:
    E106-D No:4
      Page(s):
    450-458

    In recent years, with the aging of society, many kinds of research have been actively conducted to recognize human activity in a home to watch over the elderly. Multiple sensors for activity recognition are used. However, we need to consider privacy when using these sensors. One of the candidates of the sensors that keep privacy is a sound sensor. MFCC (Mel-Frequency Cepstral Coefficient) is widely used as a feature extraction algorithm for voice recognition. However, it is not suitable to apply conventional MFCC to activity recognition by sounds of daily life. We denote “sounds of daily life” as “life sounds” simply in this paper. The reason is that conventional MFCC does not extract well several features of life sounds that appear at high frequencies. This paper proposes the improved MFCC and reports the evaluation results of activity recognition by machine learning SVM (Support Vector Machine) using features extracted by improved MFCC.

  • An Efficient Combined Bit-Width Reducing Method for Ising Models

    Yuta YACHI  Masashi TAWADA  Nozomu TOGAWA  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2023/01/12
      Vol:
    E106-D No:4
      Page(s):
    495-508

    Annealing machines such as quantum annealing machines and semiconductor-based annealing machines have been attracting attention as an efficient computing alternative for solving combinatorial optimization problems. They solve original combinatorial optimization problems by transforming them into a data structure called an Ising model. At that time, the bit-widths of the coefficients of the Ising model have to be kept within the range that an annealing machine can deal with. However, by reducing the Ising-model bit-widths, its minimum energy state, or ground state, may become different from that of the original one, and hence the targeted combinatorial optimization problem cannot be well solved. This paper proposes an effective method for reducing Ising model's bit-widths. The proposed method is composed of two processes: First, given an Ising model with large coefficient bit-widths, the shift method is applied to reduce its bit-widths roughly. Second, the spin-adding method is applied to further reduce its bit-widths to those that annealing machines can deal with. Without adding too many extra spins, we efficiently reduce the coefficient bit-widths of the original Ising model. Furthermore, the ground state before and after reducing the coefficient bit-widths is not much changed in most of the practical cases. Experimental evaluations demonstrate the effectiveness of the proposed method, compared to existing methods.

  • CAMRI Loss: Improving the Recall of a Specific Class without Sacrificing Accuracy

    Daiki NISHIYAMA  Kazuto FUKUCHI  Youhei AKIMOTO  Jun SAKUMA  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2023/01/23
      Vol:
    E106-D No:4
      Page(s):
    523-537

    In real world applications of multiclass classification models, misclassification in an important class (e.g., stop sign) can be significantly more harmful than in other classes (e.g., no parking). Thus, it is crucial to improve the recall of an important class while maintaining overall accuracy. For this problem, we found that improving the separation of important classes relative to other classes in the feature space is effective. Existing methods that give a class-sensitive penalty for cross-entropy loss do not improve the separation. Moreover, the methods designed to improve separations between all classes are unsuitable for our purpose because they do not consider the important classes. To achieve the separation, we propose a loss function that explicitly gives loss for the feature space, called class-sensitive additive angular margin (CAMRI) loss. CAMRI loss is expected to reduce the variance of an important class due to the addition of a penalty to the angle between the important class features and the corresponding weight vectors in the feature space. In addition, concentrating the penalty on only the important class hardly sacrifices separating the other classes. Experiments on CIFAR-10, GTSRB, and AwA2 showed that CAMRI loss could improve the recall of a specific class without sacrificing accuracy. In particular, compared with GTSRB's second-worst class recall when trained with cross-entropy loss, CAMRI loss improved recall by 9%.

  • Exploring Effect of Residual Electric Charges on Cryptographic Circuits: Extended Version

    Mitsuru SHIOZAKI  Takeshi SUGAWARA  Takeshi FUJINO  

     
    PAPER

      Pubricized:
    2022/09/15
      Vol:
    E106-A No:3
      Page(s):
    281-293

    We study a new transistor-level side-channel leakage caused by charges trapped in between stacked transistors namely residual electric charges (RECs). Building leakage models is important in designing countermeasures against side-channel attacks (SCAs). The conventional work showed that even a transistor-level leakage is measurable with a local electromagnetic measurement. One example is the current-path leak [1], [2]: an attacker can distinguish the number of transistors in the current path activated during a signal transition. Addressing this issue, Sugawara et al. proposed to use a mirror circuit that has the same number of transistors on its possible current paths. We show that this countermeasure is insufficient by showing a new transistor-level leakage, caused by RECs, not covered in the previous work. RECs can carry the history of the gate's state over multiple clock cycles and changes the gate's electrical behavior. We experimentally verify that RECs cause exploitable side-channel leakage. We also propose a countermeasure against REC leaks and designed advanced encryption standard-128 (AES-128) circuits using IO-masked dual-rail read-only memory with a 180-nm complementary metal-oxide-semiconductor (CMOS) process. We compared the resilience of our AES-128 circuits against EMA attacks with and without our countermeasure and investigated an RECs' effect on physically unclonable functions (PUFs). We further extend RECs to physically unclonable function. We demonstrate that RECs affect the performance of arbiter and ring-oscillator PUFs through experiments using our custom chips fabricated with 180- and 40-nm CMOS processes*.

  • A Generic Construction of CCA-Secure Identity-Based Encryption with Equality Test against Insider Attacks

    Keita EMURA  Atsushi TAKAYASU  

     
    PAPER

      Pubricized:
    2022/05/30
      Vol:
    E106-A No:3
      Page(s):
    193-202

    Identity-based encryption with equality test (IBEET) is a generalization of the traditional identity-based encryption (IBE) and public key searchable encryption, where trapdoors enable users to check whether two ciphertexts of distinct identities are encryptions of the same plaintext. By definition, IBEET cannot achieve indistinguishability security against insiders, i.e., users who have trapdoors. To address this issue, IBEET against insider attacks (IBEETIA) was later introduced as a dual primitive. While all users of IBEETIA are able to check whether two ciphertexts are encryptions of the same plaintext, only users who have tokens are able to encrypt plaintexts. Hence, IBEETIA is able to achieve indistinguishability security. On the other hand, the definition of IBEETIA weakens the notion of IBE due to its encryption inability. Nevertheless, known schemes of IBEETIA made use of rich algebraic structures such as bilinear groups and lattices. In this paper, we propose a generic construction of IBEETIA without resorting to rich algebraic structures. In particular, the only building blocks of the proposed construction are symmetric key encryption and pseudo-random permutations in the standard model. If a symmetric key encryption scheme satisfies CCA security, our proposed IBEETIA scheme also satisfies CCA security.

  • Short Lattice Signature Scheme with Tighter Reduction under Ring-SIS Assumption

    Kaisei KAJITA  Go OHTAKE  Kazuto OGAWA  Koji NUIDA  Tsuyoshi TAKAGI  

     
    PAPER

      Pubricized:
    2022/09/08
      Vol:
    E106-A No:3
      Page(s):
    228-240

    We propose a short signature scheme under the ring-SIS assumption in the standard model. Specifically, by revisiting an existing construction [Ducas and Micciancio, CRYPTO 2014], we demonstrate lattice-based signatures with improved reduction loss. As far as we know, there are no ways to use multiple tags in the signature simulation of security proof in the lattice tag-based signatures. We address the tag-collision possibility in the lattice setting, which improves reduction loss. Our scheme generates tags from messages by constructing a scheme under a mild security condition that is existentially unforgeable against random message attack with auxiliary information. Thus our scheme can reduce the signature size since it does not need to send tags with the signatures. Our scheme has short signature sizes of O(1) and achieves tighter reduction loss than that of Ducas et al.'s scheme. Our proposed scheme has two variants. Our scheme with one property has tighter reduction and the same verification key size of O(log n) as that of Ducas et al.'s scheme, where n is the security parameter. Our scheme with the other property achieves much tighter reduction loss of O(Q/n) and verification key size of O(n), where Q is the number of signing queries.

221-240hit(8214hit)