The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] CTI(8214hit)

3481-3500hit(8214hit)

  • A Comparative Investigation of Several Frequency Modulation Profiles for Programmed Switching Controllers Targeted Conducted-Noise Reduction in DC-DC Converters

    Gamal M. DOUSOKY  Masahito SHOYAMA  Tamotsu NINOMIYA  

     
    PAPER

      Vol:
    E93-B No:9
      Page(s):
    2265-2272

    This paper investigates the effect of several frequency modulation profiles on conducted-noise reduction in dc-dc converters with programmed switching controller. The converter is operated in variable frequency modulation regime. Twelve switching frequency modulation profiles have been studied. Some of the modulation data are prepared using MATLAB software, and others are generated online. Moreover, all the frequency profiles have been designed and implemented using FPGA and experimentally investigated. The experimental results show that the conducted-noise spreading depends on both the modulation sequence profile and the statistical characteristics of the sequence. A substantial part of the manufacturing cost of power converters for telecommunication applications involves designing filters to comply with the EMI limits. Considering this investigation significantly reduces the filter size.

  • A Concurrent Instruction Scheduling and Recoding Algorithm for Power Minimization in Embedded Systems

    Sung-Rae LEE  Ser-Hoon LEE  Sun-Young HWANG  

     
    PAPER-Software System

      Vol:
    E93-D No:8
      Page(s):
    2162-2171

    This paper presents an efficient instruction scheduling algorithm which generates low-power codes for embedded system applications. Reordering and recoding are concurrently applied for low-power code generation in the proposed algorithm. By appropriate reordering of instruction sequences, the efficiency of instruction recoding is increased. The proposed algorithm constructs program codes on a basic-block basis by selecting a code sequence from among the schedules generated randomly and maintained by the system. By generating random schedules for each of the basic blocks constituting an application program, the proposed algorithm constructs a histogram graph for each of the instruction fields to estimate the figure-of-merits achievable by reordering instruction sequences. For further optimization, the system performs simulated annealing on the generated code. Experimental results for benchmark programs show that the codes generated by the proposed algorithm consume 37.2% less power on average when compared to the previous algorithm which performs list scheduling prior to instruction recoding.

  • Extended Selective Encoding of Scan Slices for Reducing Test Data and Test Power

    Jun LIU  Yinhe HAN  Xiaowei LI  

     
    PAPER-Information Network

      Vol:
    E93-D No:8
      Page(s):
    2223-2232

    Test data volume and test power are two major concerns when testing modern large circuits. Recently, selective encoding of scan slices is proposed to compress test data. This encoding technique, unlike many other compression techniques encoding all the bits, only encodes the target-symbol by specifying a single bit index and copying group data. In this paper, we propose an extended selective encoding which presents two new techniques to optimize this method: a flexible grouping strategy, X bits exploitation and filling strategy. Flexible grouping strategy can decrease the number of groups which need to be encoded and improve test data compression ratio. X bits exploitation and filling strategy can exploit a large number of don't care bits to reduce testing power with no compression ratio loss. Experimental results show that the proposed technique needs less test data storage volume and reduces average weighted switching activity by 25.6% and peak weighted switching activity by 9.68% during scan shift compared to selective encoding.

  • A New Subband-Weighted MVDR-Based Front-End for Robust Speech Recognition

    Sanaz SEYEDIN  Seyed Mohammad AHADI  

     
    PAPER-Speech and Hearing

      Vol:
    E93-D No:8
      Page(s):
    2252-2261

    This paper presents a novel noise-robust feature extraction method for speech recognition. It is based on making the Minimum Variance Distortionless Response (MVDR) power spectrum estimation method robust against noise. This robustness is obtained by modifying the distortionless constraint of the MVDR spectral estimation method via weighting the sub-band power spectrum values based on the sub-band signal to noise ratios. The optimum weighting is obtained by employing the experimental findings of psychoacoustics. According to our experiments, this technique is successful in modifying the power spectrum of speech signals and making it robust against noise. The above method, when evaluated on Aurora 2 task for recognition purposes, outperformed both the MFCC features as the baseline and the MVDR-based features in different noisy conditions.

  • Construction of Abdominal Probabilistic Atlases and Their Value in Segmentation of Normal Organs in Abdominal CT Scans

    Hyunjin PARK  Alfred HERO  Peyton BLAND  Marc KESSLER  Jongbum SEO  Charles MEYER  

     
    PAPER-Biological Engineering

      Vol:
    E93-D No:8
      Page(s):
    2291-2301

    A good abdominal probabilistic atlas can provide important information to guide segmentation and registration applications in the abdomen. Here we build and test probabilistic atlases using 24 abdominal CT scans with available expert manual segmentations. Atlases are built by picking a target and mapping other training scans onto that target and then summing the results into one probabilistic atlas. We improve our previous abdominal atlas by 1) choosing a least biased target as determined by a statistical tool, i.e. multidimensional scaling operating on bending energy, 2) using a better set of control points to model the deformation, and 3) using higher information content CT scans with visible internal liver structures. One atlas is built in the least biased target space and two atlases are built in other target spaces for performance comparisons. The value of an atlas is assessed based on the resulting segmentations; whichever atlas yields the best segmentation performance is considered the better atlas. We consider two segmentation methods of abdominal volumes after registration with the probabilistic atlas: 1) simple segmentation by atlas thresholding and 2) application of a Bayesian maximum a posteriori method. Using jackknifing we measure the atlas-augmented segmentation performance with respect to manual expert segmentation and show that the atlas built in the least biased target space yields better segmentation performance than atlases built in other target spaces.

  • Generalized Theoretical Modeling of Inter-Frame Prediction Error for High Frame-Rate Video Signal Considering Integral Phenomenon

    Yukihiro BANDOH  Seishi TAKAMURA  Hirohisa JOZAWA  Yoshiyuki YASHIMA  

     
    PAPER-Image Coding and Video Coding

      Vol:
    E93-A No:8
      Page(s):
    1442-1452

    Higher frame-rates are essential in achieving more realistic representations. Since increasing the frame-rate increases the total amount of information, efficient coding methods are required. However, the statistical properties of such data, needed for designing sufficiently powerful encoders, have not been clarified. Conventional studies on encoding high frame-rate sequences do not consider the effect on the encoding bit-rate of the motion blur generated by the shutter being open. When the open interval of the shutter in the image pickup apparatus increases, motion blur occurs, which is known as the integral phenomenon. The integral phenomenon changes the statistical properties of the video signal. This paper derives, for high frame-rate video, a mathematical model that quantifies the relationship between frame-rate and bit-rate; it incorporates the effect of the low-pass filtering induced by the open shutter. A coding experiment confirms the validity of the mathematical model.

  • A Switch Block Architecture for Multi-Context FPGAs Based on a Ferroelectric-Capacitor Functional Pass-Gate Using Multiple/Binary Valued Hybrid Signals

    Shota ISHIHARA  Noriaki IDOBATA  Masanori HARIYAMA  Michitaka KAMEYAMA  

     
    PAPER-Application of Multiple-Valued VLSI

      Vol:
    E93-D No:8
      Page(s):
    2134-2144

    Dynamically Programmable Gate Arrays (DPGAs) provide more area-efficient implementations than conventional Field Programmable Gate Arrays (FPGAs). One of typical DPGA architectures is multi-context architecture. An DPGA based on multi-context architecture is Multi-Context FPGA (MC-FPGA) which achieves fast switching between contexts. The problem of the conventional SRAM-based MC-FPGA is its large area and standby power dissipation because of the large number of configuration memory bits. Moreover, since SRAM is volatile, the SRAM-based multi-context FPGA is difficult to implement power-gating for standby power reduction. This paper presents an area-efficient and nonvolatile multi-context switch block architecture for MC-FPGAs based on a ferroelectric-capacitor functional pass-gate which merges a multiple-valued threshold function and a nonvolatile multiple-valued storage. The test chip for four contexts is fabricated in a 0.35 µm-CMOS/0.60 µm-ferroelectric-capacitor process. The transistor count of the proposed multi-context switch block is reduced to 63% in comparison with that of the SRAM-based one.

  • Identifying IP Blocks with Spamming Bots by Spatial Distribution

    Sangki YUN  Byungseung KIM  Saewoong BAHK  Hyogon KIM  

     
    LETTER-Internet

      Vol:
    E93-B No:8
      Page(s):
    2188-2190

    In this letter, we develop a behavioral metric with which spamming botnets can be quickly identified with respect to their residing IP blocks. Our method aims at line-speed operation without deep inspection, so only TCP/IP header fields of the passing packets are examined. However, the proposed metric yields a high-quality receiver operating characteristics (ROC), with high detection rates and low false positive rates.

  • Tiny Feel: A New Miniature Tactile Module Using Elastic and Electromagnetic Force for Mobile Devices

    Tae-Heon YANG  Sang-Youn KIM  Wayne J. BOOK  Dong-Soo KWON  

     
    PAPER-Human-computer Interaction

      Vol:
    E93-D No:8
      Page(s):
    2233-2242

    For tactile feedback in mobile devices, the size and the power consumption of tactile modules are the dominant factors. Thus, vibration motors have been widely used in mobile devices to provide tactile sensation. However, the vibration motor cannot sufficiently generate a great amount of tactile sensation because the magnitude and the frequency of the vibration motor are coupled. For the generation of a wide variety of tactile sensations, this paper presents a new tactile actuator that incorporates a solenoid, a permanent magnet and an elastic spring. The feedback force in this actuator is generated by elastic and electromagnetic force. This paper also proposes a tiny tactile module with the proposed actuators. To construct a tiny tactile module, the contactor gap of the module is minimized without decreasing the contactor stroke, the output force, and the working frequency. The elastic springs of the actuators are separated into several layers to minimize the contactor gap without decreasing the performance of the tactile module. Experiments were conducted to investigate each contactor output force as well as the frequency response of the proposed tactile module. Each contactor of the tactile module can generate enough output force to stimulate human mechanoreceptors. As the contactors are actuated in a wide range of frequency, the proposed tactile module can generate various tactile sensations. Moreover, the size of the proposed tactile module is small enough to be embedded it into a mobile device, and its power consumption is low. Therefore, the proposed tactile actuator and module have good potential in many interactive mobile devices.

  • A 90-Gb/s Modulator Driver IC Based on Functional Distributed Circuits for Optical Transmission Systems

    Yasuyuki SUZUKI  Zin YAMAZAKI  Masayuki MAMADA  

     
    PAPER-III-V High-Speed Devices and Circuits

      Vol:
    E93-C No:8
      Page(s):
    1266-1272

    A monolithic modulator driver IC based on InP HBTs with a new circuit topology -- called a functional distributed circuit (FDC) -- for over 80-Gb/s optical transmission systems has been developed. The FDC topology includes a wide-band amplifier designed using a distributed circuit, a digital function designed using a lumped circuit, and broadband impedance matching between the lumped circuit and distributed circuit to enable both wider bandwidth and digital functions. The driver IC integrated with a 2:1 multiplexing function produces 2.6-Vp-p (differential output: 5.2 Vp-p) and 2.4- Vp-p (differential output: 4.8 Vp-p) output-voltage swings with less than 450-fs and 530-fs rms jitter at 80 Gb/s and 90 Gb/s, respectively. To the best of our knowledge, this is equivalent to the highest data rate operation yet reported for monolithic modulator drivers. When it was mounted in a module, the driver IC successfully achieved electro-optical modulation using a dual-drive LiNbO3 Mach-Zehnder modulator up to 90 Gb/s. These results indicate that the FDC has the potential to realize high-speed and functional ICs for over-80-Gb/s transmission systems.

  • A Systematic Design Method for Two-Variable Numeric Function Generators Using Multiple-Valued Decision Diagrams

    Shinobu NAGAYAMA  Tsutomu SASAO  Jon T. BUTLER  

     
    PAPER-Logic Design

      Vol:
    E93-D No:8
      Page(s):
    2059-2067

    This paper proposes a high-speed architecture to realize two-variable numeric functions. It represents the given function as an edge-valued multiple-valued decision diagram (EVMDD), and shows a systematic design method based on the EVMDD. To achieve a design, we characterize a numeric function f by the values of l and p for which f is an l-restricted Mp-monotone increasing function. Here, l is a measure of subfunctions of f and p is a measure of the rate at which f increases with an increase in the dependent variable. For the special case of an EVMDD, the EVBDD, we show an upper bound on the number of nodes needed to realize an l-restricted Mp-monotone increasing function. Experimental results show that all of the two-variable numeric functions considered in this paper can be converted into an l-restricted Mp-monotone increasing function with p=1 or 3. Thus, they can be compactly realized by EVBDDs. Since EVMDDs have shorter paths and smaller memory size than EVBDDs, EVMDDs can produce fast and compact NFGs.

  • A Delay Model of Multiple-Valued Logic Circuits Consisting of Min, Max, and Literal Operations

    Noboru TAKAGI  

     
    PAPER-Logic Design

      Vol:
    E93-D No:8
      Page(s):
    2040-2047

    Delay models for binary logic circuits have been proposed and clarified their mathematical properties. Kleene's ternary logic is one of the simplest delay models to express transient behavior of binary logic circuits. Goto first applied Kleene's ternary logic to hazard detection of binary logic circuits in 1948. Besides Kleene's ternary logic, there are many delay models of binary logic circuits, Lewis's 5-valued logic etc. On the other hand, multiple-valued logic circuits recently play an important role for realizing digital circuits. This is because, for example, they can reduce the size of a chip dramatically. Though multiple-valued logic circuits become more important, there are few discussions on delay models of multiple-valued logic circuits. Then, in this paper, we introduce a delay model of multiple-valued logic circuits, which are constructed by Min, Max, and Literal operations. We then show some of the mathematical properties of our delay model.

  • A Controllable GOG Model for Ergonomic Color Reproduction of Digital Imaging Systems

    Sung-Hak LEE  Kyu-Ik SOHNG  

     
    LETTER-Digital Signal Processing

      Vol:
    E93-A No:8
      Page(s):
    1453-1456

    The visual attributes, brightness, colorfulness, and hue, are affected by chromaticity coordinates, excitation purity, and luminance of background, and these attributes are changed according as intensity of illumination changes. Therefore there is a need to correct display's conditions by controlling image factors such as luminance offset, contrast, color gain, and gamma to maintain the perceived display quality. The focus of our study is on the formulation of a simpler and more effective model for color and tone reproduction for digital imaging systems to utilize color appearance models. It can be applicable to optimum color display conditions to give comfort and consistency visually in various ambient conditions.

  • Design of a Wideband UHF RFID Printed Tag Antenna Using the R2R Process

    Uisheon KIM  Gyubong JUNG  Jaehoon CHOI  

     
    PAPER-Antennas and Propagation

      Vol:
    E93-B No:8
      Page(s):
    2135-2141

    This paper proposes a printed tag antenna for the universal ultra-high frequency (UHF) radio frequency identification (RFID) band (860-960 MHz) using the R2R process. To widen impedance bandwidth, a π-shaped matching network is suggested. The overall dimension of the proposed tag antenna is 83.4 mm 30.2 mm and it has a gain of over 1 dBi for the entire UHF RFID band. The performances of the proposed tag antenna, printed with conductivity silver ink using an R2R process, are compared with those of a copper antenna.

  • Global Nonlinear Optimization Based on Eigen Analysis of Schrodinger-Type Equation

    Hideki SATOH  

     
    PAPER-Nonlinear Problems

      Vol:
    E93-A No:8
      Page(s):
    1476-1485

    A method has been developed for deriving the approximate global optimum of a nonlinear objective function. First, the objective function is expanded into a linear equation for a moment vector, and the optimization problem is reduced to an eigen analysis problem in the wave coefficient space. Next, the process of the optimization is expressed using a Schrodinger-type equation, so global optimization is equivalent to eigen analysis of the Hamiltonian of a Schrodinger-type equation. Computer simulation of this method demonstrated that it produces a good approximation of the global optimum. An example optimization problem was solved using a Hamiltonian constructed by combining Hamiltonians for other optimization problems, demonstrating that various types of applications can be solved by combining simple Hamiltonians.

  • Implementation of Physics-Based Model for Current-Voltage Characteristics in Resonant Tunneling Diodes by Using the Voigt Function

    Hideaki SHIN-YA  Michihiko SUHARA  Naoya ASAOKA  Mamoru NAOI  

     
    PAPER-THz Electronics

      Vol:
    E93-C No:8
      Page(s):
    1295-1301

    We derive physics-based formula of current-voltage characteristic for resonant tunneling diodes (RTDs) by using the Voigt function. The Voigt function describes the mixing condition of homogeneous and inhomogeneous broadenings of peak energy width in transmission probability, which is sensitively reflected to nonlinear negative differential resistance of RTDs. The obtained formula is applicable to the SPICE model of RTD without performing numerical integrals. We indicate validity of the formula by comparing to measured data for double-barrier and triple-barrier RTDs.

  • Orientation Estimation for Sensor Motion Tracking Using Interacting Multiple Model Filter

    Chin-Der WANN  Jian-Hau GAO  

     
    LETTER-Systems and Control

      Vol:
    E93-A No:8
      Page(s):
    1565-1568

    In this letter, we present a real-time orientation estimation and motion tracking scheme using interacting multiple model (IMM) based Kalman filtering method. Two nonlinear filters, quaternion-based extended Kalman filter (QBEKF) and gyroscope-based extended Kalman filter (GBEKF) are utilized in the proposed IMM-based orientation estimator for sensor motion state estimation. In the QBEKF, measurements from gyroscope, accelerometer and magnetometer are processed; while in the GBEKF, sole measurements from gyroscope are processed. The interacting multiple model algorithm is used for fusing the estimated states via adaptive model weighting. Simulation results validate the proposed design concept, and the scheme is capable of reducing overall estimation errors in sensor motion tracking.

  • Exact Algorithms for Finding a Minimum Reaction Cut under a Boolean Model of Metabolic Networks

    Takeyuki TAMURA  Tatsuya AKUTSU  

     
    PAPER-Algorithms and Data Structures

      Vol:
    E93-A No:8
      Page(s):
    1497-1507

    A reaction cut is a set of chemical reactions whose deletion blocks the operation of given reactions or the production of given chemical compounds. In this paper, we study two problems ReactionCut and MD-ReactionCut for calculating the minimum reaction cut of a metabolic network under a Boolean model. These problems are based on the flux balance model and the minimal damage model respectively. We show that ReactionCut and MD-ReactionCut are NP-hard even if the maximum outdegree of reaction nodes (Kout) is one. We also present O(1.822n), O(1.959n) and o(2n) time algorithms for MD-ReactionCut with Kout=2, 3, k respectively where n is the number of reaction nodes and k is a constant. The same algorithms also work for ReactionCut if there is no directed cycle. Furthermore, we present a 2O((log n)) time algorithm, which is faster than O((1+ε)n) for any positive constant ε, for the planar case of MD-ReactionCut under a reasonable constraint utilizing Lipton and Tarjan's separator algorithm.

  • InP-Based Unipolar Heterostructure Diode for Vertical Integration, Level Shifting, and Small Signal Rectification

    Werner PROST  Dudu ZHANG  Benjamin MUNSTERMANN  Tobias FELDENGUT  Ralf GEITMANN  Artur POLOCZEK  Franz-Josef TEGUDE  

     
    PAPER-III-V Heterostructure Devices

      Vol:
    E93-C No:8
      Page(s):
    1309-1314

    A unipolar n-n heterostrucuture diode is developed in the InP material system. The electronic barrier is formed by a saw tooth type of conduction band bending which consists of a quaternary In0.52(AlyGa1-y)0.48As layer with 0 < y < ymax. This barrier is lattice matched for all y to InP and is embedded between two n+-InGaAs layers. By varying the maximum Al-content from ymax,1 = 0.7 to ymax,2 = 1 a variable barrier height is formed which enables a diode-type I-V characteristic by epitaxial design with an adjustable current density within 3 orders of magnitude. The high current density of the diode with the lower barrier height (ymax,1 = 0.7) makes it suitable for high frequency applications at low signal levels. RF measurements reveal a speed index of 52 ps/V at VD = 0.15 V. The device is investigated for RF-to-DC power conversion in UHF RFID transponders with low-amplitude RF signals.

  • An Evaluation Method for Anisotropic Absorber Panels Using a Diagonalization Method

    Shinichiro YAMAMOTO  Tohru IWAI  Kenichi HATAKEYAMA  

     
    LETTER

      Vol:
    E93-B No:7
      Page(s):
    1851-1854

    In this paper, an evaluation method for electromagnetic wave absorber with anisotropic reflection properties is discussed. Anisotropic absorber panels have an axis of anisotropy (principal axis). In order to specify the principal axis, the evaluation method based on the diagonalization of reflection coefficient matrix is used. Also, the permittivity of absorber materials is considered.

3481-3500hit(8214hit)