The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] CTI(8214hit)

3381-3400hit(8214hit)

  • A Digital Fingerprinting Code Based on a Projective Plane and Its Identifiability of All Malicious Users

    Hiroki KOGA  Yusuke MINAMI  

     
    PAPER-Digital Fingerprinting

      Vol:
    E94-A No:1
      Page(s):
    223-232

    In this paper we unveil basic properties of a code Γq for digital fingerprinting based on a projective plane of order q. We consider a situation where a coalition of malicious users generates a pirated digital content in which a binary sequence w is embedded subject to the marking assumption. Here, the size of the coalition is assumed to be less than or equal to a known constant c ≥ 2. We evaluate the number of candidates of the coalition that can also generate w subject to the marking assumption. It is shown that the number of such candidates is completely determined as a function of w for the case of c = 2. In addition, we give a sufficient condition under which all the malicious users are correctly identified from w for the case of c ≥ 3. Relationships between Γq and other existing classes of codes are discussed as well.

  • Two Relay-Stage Selection Cooperation in Wireless Networks and Why More than Two Is Not Necessary

    Xingyang CHEN  Lin ZHANG  Yuhan DONG  Xiuming SHAN  Yong REN  

     
    PAPER

      Vol:
    E93-B No:12
      Page(s):
    3332-3344

    The selection cooperation is a basic and attractive scheme of cooperative diversity in the multiple relays scenario. Most previous schemes of selection cooperation consist only one relay-stage in which one relay is selected to retransmit, and the signal from the selected relay is not utilized by other relays. In this paper, we introduce a two relay-stage selection cooperation scheme. The performance can be improved by letting all other relays to utilize the signal from the first selected relay to make another selection and retransmission in the second relay-stage. We derive the closed-form expression of the outage probability of the proposed scheme in the high SNR regime. Both theoretical and numerical results suggest that the proposed scheme can reduce the outage probability compared with the traditional scheme with only one relay-stage. Furthermore, we demonstrate that more than two relay-stage can not further reduce the outage probability. We also study the dependence of the proposed scheme on stage lengths and topology, and analyze the increased overhead.

  • Analysis of Primary Signal Detection Period in Cognitive Wireless Communications

    Chang-Woo PYO  Hiroshi HARADA  

     
    LETTER

      Vol:
    E93-B No:12
      Page(s):
    3501-3504

    This paper investigates primary signal detection by using a quiet period (QP) in cognitive wireless communications. In particular, we provide an analytical model for studying the impact of QPs on the system performance. Our analysis shows that two successive QPs have a significant impact on system performance. Moreover, the analytical results obtained reveal an optimum period of two successive QPs that maximize system performance.

  • Subtraction Inversion for Delta Path's Hardware Simplification in MASH Delta-Sigma Modulator

    Pao-Lung CHEN  

     
    LETTER-Circuit Design

      Vol:
    E93-A No:12
      Page(s):
    2616-2620

    The multistage noise-shaping (MASH) delta-sigma modulator (DSM) is the key element in a fractional-N frequency synthesizer. A hardware simplification method with subtraction inversion is proposed for delta-path's design in a MASH delta-sigma modulator. The subtraction inversion method focuses on simplification of adder-subtractor unit in the delta path with inversion of subtraction signal. It achieves with less hardware cost as compared with the conventional approaches. As a result, the hardware organization is regular and easy for expanding into higher order MASH DSM design. Analytical details of the implementation way and hardware cost function with N-th order configuration are presented. Finally, simulations with hardware description language as well as synthesis data verified the proposed design method.

  • A Lightweight Routing Protocol for Mobile Target Detection in Wireless Sensor Networks

    Yu-Chen KUO  Wen-Tien YEH  Ching-Sung CHEN  Ching-Wen CHEN  

     
    PAPER-Network

      Vol:
    E93-B No:12
      Page(s):
    3591-3599

    The AODV routing protocol, which is simple and efficient, is often used in wireless sensor networks to transmit data. The AODV routing protocol constructs a path from the source node, which detects the target, to the sink node. Whenever the target moves, the path will be reconstructed and the RREQ packet will be broadcasted to flood the wireless sensor network. The localization repair routing protocol sets up a reconstruction area and restricts the broadcast of the RREQ packet to that area to avoid broadcast storm. However, this method cannot reconstruct the path once the target moves out of the reconstruction area. In this paper, we propose a lightweight routing protocol for mobile target detection. When the path breaks because of the movement of the target, the nodes can repair the path effectively using the presented routing information to achieve the lightweight effect.

  • Redundant TC Message Senders in OLSR

    Kenji YAMADA  Tsuyoshi ITOKAWA  Teruaki KITASUKA  Masayoshi ARITSUGI  

     
    LETTER

      Vol:
    E93-D No:12
      Page(s):
    3269-3272

    In this letter, we reveal redundant control traffic in the optimized link state routing protocol (OLSR) for MANET. Topology control (TC) messages, which occupy a part of control traffic in OLSR, are used to exchange topology information with other nodes. TC messages are generated and forwarded by only nodes that have been selected as multipoint relays (MPRs) by at least one neighbor node. These nodes selected as MPRs are called TC message senders in this letter. One of solutions to reduce the number of TC messages is to reduce the number of TC message senders. We describe a non-distributed algorithm to minimize the number of TC message senders. Through simulation of static-node scenarios, we show 18% to 37% of TC message senders in RFC-based OLSR are redundant. By eliminating redundant TC message senders, the number of TC packets, each of which contains one or more TC messages, is also reduced from 19% to 46%. We also show that high density scenarios have more redundancy than low density scenarios. This observation can help to consider a cooperative MPR selection in OLSR.

  • An Enhanced Automatic Gain Control Algorithm for Initial Cell Search in 3GPP LTE TDD System

    Jun-Hee JANG  Keun-Dea KIM  Hyung-Jin CHOI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E93-B No:12
      Page(s):
    3606-3615

    In this paper, we propose an AGC (Automatic Gain Control) algorithm for initial cell search in 3GPP (3rd Generation Partnership Project) LTE (Long Term Evolution) TDD (Time Division Duplex) system. Since the received signal has a large signal power difference between uplink and downlink subframe in wireless communication systems using a TDD scheme, conventional AGC scheme cannot sufficiently adjust the AGC gain because the AGC gain cannot converge fast enough to properly respond. Therefore, conventional AGC scheme leads to increased AGC gain variation, and the received signal will be attenuated by large AGC gain variation. To overcome this limitation, we propose an AGC scheme based on the average amplitude ratio calculation which can not only effectively increase convergence speed of the AGC gain but also maintain the stability of AGC operation in LTE TDD system. Also, it is important for AGC to converge efficiently for the accurate radio frame timing detection during the subsequent initial cell search procedure. Therefore, we also consider the proposed AGC scheme in combination with PSS (Primary Synchronization Signal) detection interface for the first step of initial cell search process in LTE TDD system to obtain both a stable AGC operation and accurate PSS detection performance. By extensive computer simulation in the presence of frequency offset and various channel environments, we verified that the proposed method can obtain a good behavior in terms of demodulation and PSS detection performance in LTE TDD system.

  • Binary Oriented Vulnerability Analyzer Based on Hidden Markov Model

    Hao BAI  Chang-zhen HU  Gang ZHANG  Xiao-chuan JING  Ning LI  

     
    LETTER-Dependable Computing

      Vol:
    E93-D No:12
      Page(s):
    3410-3413

    The letter proposes a novel binary vulnerability analyzer for executable programs that is based on the Hidden Markov Model. A vulnerability instruction library (VIL) is primarily constructed by collecting binary frames located by double precision analysis. Executable programs are then converted into structurized code sequences with the VIL. The code sequences are essentially context-sensitive, which can be modeled by Hidden Markov Model (HMM). Finally, the HMM based vulnerability analyzer is built to recognize potential vulnerabilities of executable programs. Experimental results show the proposed approach achieves lower false positive/negative rate than latest static analyzers.

  • On-Line Electrocardiogram Lossless Compression Using Antidictionary Codes for a Finite Alphabet

    Takahiro OTA  Hiroyoshi MORITA  

     
    PAPER-Biological Engineering

      Vol:
    E93-D No:12
      Page(s):
    3384-3391

    An antidictionary is particularly useful for data compression, and on-line electrocardiogram (ECG) lossless compression algorithms using antidictionaries have been proposed. They work in real-time with constant memory and give better compression ratios than traditional lossless data compression algorithms, while they only deal with ECG data on a binary alphabet. This paper proposes on-line ECG lossless compression for a given data on a finite alphabet. The proposed algorithm gives not only better compression ratios than those algorithms but also uses less computational space than they do. Moreover, the proposed algorithm work in real-time. Its effectiveness is demonstrated by simulation results.

  • Iterative Source-Channel Decoding Using Symbol-Level Extrinsic Information

    Chun-Feng WU  Wen-Whei CHANG  

     
    PAPER-Fundamental Theories for Communications

      Vol:
    E93-B No:12
      Page(s):
    3555-3563

    Transmission of convolutionally encoded source-codec parameters over noisy channels can benefit from the turbo principle through iterative source-channel decoding. We first formulate a recursive implementation based on sectionalized code trellises for MAP symbol decoding of binary convolutional codes. Performance is further enhanced by the use of an interpolative softbit source decoder that takes into account the channel outputs within an interleaving block. Simulation results indicate that our proposed scheme allows to exchange between its constituent decoders the symbol-level extrinsic information and achieves high robustness against channel noises.

  • Improved Dictionary-Based Code-Compression Schemes with XOR Reference for RISC/VLIW Architecture

    Jui-Chun CHEN  Chang-Hong LIN  

     
    PAPER-High-Level Synthesis and System-Level Design

      Vol:
    E93-A No:12
      Page(s):
    2517-2523

    Embedded systems are constrained by the available memory, and code-compression techniques address this issue by reducing the code size of application programs. The main challenge for the development of an effective code-compression technique is to reduce code size without affecting the overall system performance. Dictionary-based code-compression schemes are the most commonly used code-compression methods, because they can provide both good compression ratio and fast decompression. We propose an XOR-based reference scheme that can enhance the compression ratio on all the existing dictionary-based algorithms by changing the distribution of the symbols. Our approach works on all kinds of computer architecture with fixed length instructions, such as RISC or VLIW. Experiments show that our approach can further improve the compression ratio with nearly no hardware, performance, and power overheads.

  • A Time Variant Analysis of Phase Noise in Differential Cross-Coupled LC Oscillators

    Jinhua LIU  Guican CHEN  Hong ZHANG  

     
    PAPER-Device and Circuit Modeling and Analysis

      Vol:
    E93-A No:12
      Page(s):
    2433-2440

    This paper presents a systemic analysis for phase noise performances of differential cross-coupled LC oscillators by using Hajimiri and Lee's model. The effective impulse sensitivity functions (ISF) for each noise source in the oscillator is mathematically derived. According to these effective ISFs, the phase noise contribution from each device is figured out, and phase noise contributions from the device noise in the vicinity of the integer multiples of the resonant frequency, weighted by the Fourier coefficients of the effective ISF, are also calculated. The explicit closed-form expression for phase noise of the oscillator is definitely determined. The validity of the phase noise analysis is verified by good simulation agreement.

  • Spectrum Handoff for Cognitive Radio Systems Based on Prediction Considering Cross-Layer Optimization

    Xiaoyu QIAO  Zhenhui TAN  Bo AI  Jiaying SONG  

     
    PAPER

      Vol:
    E93-B No:12
      Page(s):
    3274-3283

    The spectrum handoff problem for cognitive radio systems is considered in this paper. The secondary users (SUs) can only opportunistically access the spectrum holes, i.e. the frequency channels unoccupied by the primary users (PUs). As long as a PU appears, SUs have to vacate the channel to avoid interference to PUs and switch to another available channel. In this paper, a prediction-based spectrum handoff scheme is proposed to reduce the negative effect (both the interference to PUs and the service block of SUs) during the switching time. In the proposed scheme, a hidden Markov model is used to predict the occupancy of a frequency channel. By estimating the state of the model in the next time instant, we can predict whether the frequency channel will be occupied by PUs or not. As a cross-layer design, the spectrum sensing performance parameters false alarm probability and missing detection probability are taken into account to enhance accuracy of the channel occupancy prediction. The proposed scheme will react on the spectrum sensing algorithm parameters while the spectrum handoff performance is significantly affected by them. The interference to the PUs could be reduced obviously by adapting the proposed spectrum handoff scheme, associated with a potential increase of switch delay of SUs. It will also be helpful for SUs to save broadband scan time and prefer an appropriate objective channel so as to avoid service block. Numerical results demonstrate the above performance improvement by using this prediction-based scheme.

  • Low-Voltage Operational Active Inductor for LNA Circuit

    Masaaki SODA  Ningyi WANG  Michio YOTSUYANAGI  

     
    PAPER-Circuit Design

      Vol:
    E93-A No:12
      Page(s):
    2609-2615

    A low voltage operational active inductor circuit is attractive for spiral-inductor-less LNA because of realizing high gain and low voltage operation simultaneously. In this paper, a simply structured low-voltage operational active inductor to enhance the amplifier gain is introduced and analyzed. This active inductor, which utilizes a transistor load operated in the triode region and a source follower, features a small DC voltage drop suitable for low voltage LNAs. An LNA using the active inductor load was designed with an input matching circuit using 90 nm CMOS technology. The LNA tuned to 2.4 GHz operation has 19.5 dB of the internal gain. In addition, the frequency characteristics are easily varied by changing the capacitance value in the active inductor circuit. The core circuit occupies only 0.0026 mm2 and consumes 2.8 mW with 1.2 V supply voltage.

  • A Feature-Based Service Identification Method to Improve Productivity of Service-Oriented System

    Dongsu KANG  CheeYang SONG  Doo-Kwon BAIK  

     
    LETTER-Software System

      Vol:
    E93-D No:12
      Page(s):
    3392-3395

    This paper proposes a feature-based service identification method to improve productivity using a feature relationship; where a feature can express service properties. We define the distance measured between features by considering their selective (node) and relational (edge) attributes and present the service boundary concept. The result of an evaluation of the proposed method shows that it has higher productivity than existing methods.

  • Deafness Resilient MAC Protocol for Directional Communications

    Jacir Luiz BORDIM  Koji NAKANO  

     
    PAPER

      Vol:
    E93-D No:12
      Page(s):
    3243-3250

    It is known that wireless ad hoc networks employing omnidirectional communications suffer from poor network throughput due to inefficient spatial reuse. Although the use of directional communications is expected to provide significant improvements in this regard, the lack of efficient mechanisms to deal with deafness and hidden terminal problems makes it difficult to fully explore its benefits. The main contribution of this work is to propose a Medium Access Control (MAC) scheme which aims to lessen the effects of deafness and hidden terminal problems in directional communications without precluding spatial reuse. The simulation results have shown that the proposed directional MAC provides significant throughput improvement over both the IEEE802.11DCF MAC protocol and other prominent directional MAC protocols in both linear and grid topologies.

  • Optimal Gaussian Kernel Parameter Selection for SVM Classifier

    Xu YANG  HuiLin XIONG  Xin YANG  

     
    PAPER-Pattern Recognition

      Vol:
    E93-D No:12
      Page(s):
    3352-3358

    The performance of the kernel-based learning algorithms, such as SVM, depends heavily on the proper choice of the kernel parameter. It is desirable for the kernel machines to work on the optimal kernel parameter that adapts well to the input data and the learning tasks. In this paper, we present a novel method for selecting Gaussian kernel parameter by maximizing a class separability criterion, which measures the data distribution in the kernel-induced feature space, and is invariant under any non-singular linear transformation. The experimental results show that both the class separability of the data in the kernel-induced feature space and the classification performance of the SVM classifier are improved by using the optimal kernel parameter.

  • A Method of Cognizing Primary and Secondary Radio Signals

    Satoshi TAKAHASHI  

     
    PAPER

      Vol:
    E93-A No:12
      Page(s):
    2682-2690

    A cognitive radio will have to sense and discover the spectral environments where it would not cause primary radios to interfere. Because the primary radios have the right to use the frequency, the cognitive radios as the secondary radios must detect radio signals before use. However, the secondary radios also need identifying the primary and other secondary radios where the primary radios are vulnerable to interference. In this paper, a method of simultaneously identifying signals of primary and secondary radios is proposed. The proposed bandwidth differentiation assumes the primary and secondary radios use orthogonal frequency division multiplexing (OFDM), and the secondary radios use at the lower number of subcarriers than the primary radios. The false alarm and detection probabilities are analytically evaluated using the characteristic function method. Numerical evaluations are also conducted on the assumption the primary radio is digital terrestrial television broadcasting. Result showed the proposed method could achieve the false alarm probability of 0.1 and the detection probability of 0.9 where the primary and secondary radio powers were 2.5 dB and 3.6 dB higher than the noise power. In the evaluation, the reception signals were averaged over the successive 32 snapshots, and the both the primary and secondary radios used QPSK. The power ratios were 4.7 dB and 8.4 dB where both the primary and secondary radios used 64QAM.

  • Parallel DFA Architecture for Ultra High Throughput DFA-Based Pattern Matching

    Yi TANG  Junchen JIANG  Xiaofei WANG  Chengchen HU  Bin LIU  Zhijia CHEN  

     
    PAPER

      Vol:
    E93-D No:12
      Page(s):
    3232-3242

    Multi-pattern matching is a key technique for implementing network security applications such as Network Intrusion Detection/Protection Systems (NIDS/NIPSes) where every packet is inspected against tens of thousands of predefined attack signatures written in regular expressions (regexes). To this end, Deterministic Finite Automaton (DFA) is widely used for multi-regex matching, but existing DFA-based researches have claimed high throughput at an expense of extremely high memory cost, so fail to be employed in devices such as high-speed routers and embedded systems where the available memory is quite limited. In this paper, we propose a parallel architecture of DFA called Parallel DFA (PDFA) taking advantage of the large amount of concurrent flows to increase the throughput with nearly no extra memory cost. The basic idea is to selectively store the underlying DFA in memory modules that can be accessed in parallel. To explore its potential parallelism we intensively study DFA-split schemes from both state and transition points in this paper. The performance of our approach in both the average cases and the worst cases is analyzed, optimized and evaluated by numerical results. The evaluation shows that we obtain an average speedup of 100 times compared with traditional DFA-based matching approach.

  • Downlink Radio Resource Allocation for Coordinated Cellular OFDMA Networks

    Jingya LI  Xiaodong XU  Xin CHEN  Xiaofeng TAO  Hui ZHANG  Tommy SVENSSON  Carmen BOTELLA  

     
    PAPER

      Vol:
    E93-B No:12
      Page(s):
    3480-3488

    Base station coordination is considered as a promising technique to mitigate inter-cell interference and improve the cell-edge performance in cellular orthogonal frequency division multiple-access (OFDMA) networks. The problem to design an efficient radio resource allocation scheme for coordinated cellular OFDMA networks incorporating base station coordination has been only partially investigated. In this contribution, a novel radio resource allocation algorithm with universal frequency reuse is proposed to support base station coordinated transmission. Firstly, with the assumption of global coordination between all base station sectors in the network, a coordinated subchannel assignment algorithm is proposed. Then, by dividing the entire network into a number of disjoint coordinated clusters of base station sectors, a reduced-feedback algorithm for subchannel assignment is proposed for practical use. The utility function based on the user average throughput is used to balance the efficiency and fairness of wireless resource allocation. System level simulation results demonstrate that the reduced-feedback subchannel assignment algorithm significantly improves the cell-edge average throughput and the fairness index of users in the network, with acceptable degradation of cell-average performance.

3381-3400hit(8214hit)