The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] CTI(8214hit)

3441-3460hit(8214hit)

  • Oxide Thin Film Transistor Circuits for Transparent RFID Applications Open Access

    Seung Hyun CHO  Sang Woo KIM  Woo Seok CHEONG  Chun Won BYUN  Chi-Sun HWANG  Kyoung Ik CHO  Byung Seong BAE  

     
    INVITED PAPER

      Vol:
    E93-C No:10
      Page(s):
    1504-1510

    Oxide material can make transparent devices with transparent electrodes. We developed a transparent oscillator and rectifier circuits with oxide TFTs. The source/drain and gate electrodes were made by indium thin oxide (ITO), and active layer made by transparent material of IGZO (Indium Gallium Zinc Oxide) on a glass substrate. The RC oscillator was composed of bootstrapped inverters, and 813 kHz oscillation frequency was accomplished at VDD = 15 V. For DC voltage generation from RF, transparent rectifier was fabricated and evaluated. This DC voltage from rectifier powered to the oscillator which operated successfully to create RF. For data transmission, RF transmission was evaluated with RF from the transparent oscillator. An antenna was connected to the oscillator and RF transmission to a receiving antenna was verified. Through this transmission antenna, RF was transmitted to a receiving antenna successfully. For transparent system of RFID, transparent antenna was developed and verified sending and receiving of data.

  • Improving Proximity and Diversity in Multiobjective Evolutionary Algorithms

    Chang Wook AHN  Yehoon KIM  

     
    LETTER-Biocybernetics, Neurocomputing

      Vol:
    E93-D No:10
      Page(s):
    2879-2882

    This paper presents an approach for improving proximity and diversity in multiobjective evolutionary algorithms (MOEAs). The idea is to discover new nondominated solutions in the promising area of search space. It can be achieved by applying mutation only to the most converged and the least crowded individuals. In other words, the proximity and diversity can be improved because new nondominated solutions are found in the vicinity of the individuals highly converged and less crowded. Empirical results on multiobjective knapsack problems (MKPs) demonstrate that the proposed approach discovers a set of nondominated solutions much closer to the global Pareto front while maintaining a better distribution of the solutions.

  • Reconstruction of a Dielectric Cylinder with the Use of the T-Matrix and the Singular Value Decomposition

    Kenichi ISHIDA  

     
    PAPER-Electromagnetic Analysis

      Vol:
    E93-B No:10
      Page(s):
    2595-2600

    An algorithm is formulated for reconstructing a dielectric cylinder with the use of the T-matrix and the singular value decomposition (SVD) and is discussed through numerical examples under noisy conditions. The algorithm consists of two stages. At the first stage the measured data of scattered waves is transformed into the T-matrix. At the second stage we reconstruct the cylinder from the T-matrix. The singular value decomposition is applied in order to separate the radiating and the nonradiating currents, and the radiating current is directly obtained from the T-matrix. The nonradiating current and the object are reconstructed by decreasing a residual error of the current in the least square approximation, where linear equations are solved repeatedly. Some techniques are used in order to reduce the calculation time and to reduce the effects of noise. Numerical examples show us that the presented approach is simple and numerically feasible, and enables us to reconstruct a large object in a short time.

  • Analysis to Random Direction Model of Ad-Hoc Networks

    Yan-tao LIU  Ji-hua LU  Heng LIU  

     
    LETTER-Network

      Vol:
    E93-B No:10
      Page(s):
    2773-2776

    The asymptotic properties of node distribution and speed distribution in random direction model were analyzed, respectively, by the tools of geometric probability and palm calculus. The probability density function for node distribution in circular regions was obtained which indicated that mobile nodes tended to disperse as simulation advancing. The speed decay phenomenon was confirmed in this model. Moreover, the hypostasis of speed decay was proved to be the correlation between speed and duration within any movement period.

  • Genetic Algorithm Based Equalizer for Ultra-Wideband Wireless Communication Systems

    Nazmat SURAJUDEEN-BAKINDE  Xu ZHU  Jingbo GAO  Asoke K. NANDI  Hai LIN  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E93-B No:10
      Page(s):
    2725-2734

    In this paper, we propose a genetic algorithm (GA) based equalization approach for direct sequence ultra-wideband (DS-UWB) wireless communication systems, where the GA is combined with a RAKE receiver to combat the inter-symbol interference (ISI) due to the frequency selective nature of UWB channels for high data rate transmission. The proposed GA based equalizer outperforms significantly the RAKE and the RAKE-minimum mean square error (MMSE) receivers according to results obtained from intensive simulation work. The RAKE-GA receiver also provides bit-error-rate (BER) performance very close to that of the optimal RAKE-maximum likelihood detection (MLD) approach, while offering a much lower computational complexity.

  • Distributed Switch and Stay Combining with Partial Relay Selection over Rayleigh Fading Channels

    Vo Nguyen Quoc BAO  Hyung Yun KONG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E93-B No:10
      Page(s):
    2795-2799

    Switch and stay combining (SSC) is an attractive diversity technique due to its low complexity and compatibility to resource-constrained wireless networks. This letter proposes a distributed SSC for partial relay selection networks in order to achieve spatial diversity as well as to improve spectral efficiency. Simulation results show that the performance loss (in terms of bit error probability) of the proposed networks relative to partial relay selection networks with selection combining is not substantial.

  • A New Scheme to Avoid Null Zone for HF-Band RFID with Diversity Combining of Loop Antennas

    Hiroshi HIRAYAMA  Nobuyoshi KIKUMA  Kunio SAKAKIBARA  

     
    LETTER-Antennas

      Vol:
    E93-B No:10
      Page(s):
    2666-2669

    A new scheme to avoid null zone for HF-band RFID without expanding antenna size is proposed. At first, we demonstrate by FDTD simulation that the null zone occurs because of cancellation of magnetic fields over the loop surface. To prevent cancellation of magnetic fields, the loop antenna is split into four parts, which work as a planar array antenna. The outputs of antennas are gathered by using combining circuit. We have validated by FDTD simulation that the proposed scheme enlarges the worst received power by 13.1 dB.

  • A Priority Routing Protocol Based on Location and Moving Direction in Delay Tolerant Networks

    Jian SHEN  Sangman MOH  Ilyong CHUNG  

     
    PAPER-Information Network

      Vol:
    E93-D No:10
      Page(s):
    2763-2775

    Delay Tolerant Networks (DTNs) are a class of emerging networks that experience frequent and long-duration partitions. Delay is inevitable in DTNs, so ensuring the validity and reliability of the message transmission and making better use of buffer space are more important than concentrating on how to decrease the delay. In this paper, we present a novel routing protocol named Location and Direction Aware Priority Routing (LDPR) for DTNs, which utilizes the location and moving direction of nodes to deliver a message from source to destination. A node can get its location and moving direction information by receiving beacon packets periodically from anchor nodes and referring to received signal strength indicator (RSSI) for the beacon. LDPR contains two schemes named transmission scheme and drop scheme, which take advantage of the nodes' information of the location and moving direction to transmit the message and store the message into buffer space, respectively. Each message, in addition, is branded a certain priority according to the message's attributes (e.g. importance, validity, security and so on). The message priority decides the transmission order when delivering the message and the dropping sequence when the buffer is full. Simulation results show that the proposed LDPR protocol outperforms epidemic routing (EPI) protocol, prioritized epidemic routing (PREP) protocol, and DTN hierarchical routing (DHR) protocol in terms of packet delivery ratio, normalized routing overhead and average end-to-end delay. It is worth noting that LDPR doesn't need infinite buffer size to ensure the packet delivery ratio as in EPI. In particular, even though the buffer size is only 50, the packet delivery ratio of LDPR can still reach 93.9%, which can satisfy general communication demand. We expect LDPR to be of greater value than other existing solutions in highly disconnected and mobile networks.

  • A Semi-Supervised Approach to Perceived Age Prediction from Face Images

    Kazuya UEKI  Masashi SUGIYAMA  Yasuyuki IHARA  

     
    LETTER-Image Recognition, Computer Vision

      Vol:
    E93-D No:10
      Page(s):
    2875-2878

    We address the problem of perceived age estimation from face images, and propose a new semi-supervised approach involving two novel aspects. The first novelty is an efficient active learning strategy for reducing the cost of labeling face samples. Given a large number of unlabeled face samples, we reveal the cluster structure of the data and propose to label cluster-representative samples for covering as many clusters as possible. This simple sampling strategy allows us to boost the performance of a manifold-based semi-supervised learning method only with a relatively small number of labeled samples. The second contribution is to take the heterogeneous characteristics of human age perception into account. It is rare to misjudge the age of a 5-year-old child as 15 years old, but the age of a 35-year-old person is often misjudged as 45 years old. Thus, magnitude of the error is different depending on subjects' age. We carried out a large-scale questionnaire survey for quantifying human age perception characteristics, and propose to utilize the quantified characteristics in the framework of weighted regression. Consequently, our proposed method is expressed in the form of weighted least-squares with a manifold regularizer, which is scalable to massive datasets. Through real-world age estimation experiments, we demonstrate the usefulness of the proposed method.

  • Cartesian Kernel: An Efficient Alternative to the Pairwise Kernel

    Hisashi KASHIMA  Satoshi OYAMA  Yoshihiro YAMANISHI  Koji TSUDA  

     
    PAPER

      Vol:
    E93-D No:10
      Page(s):
    2672-2679

    Pairwise classification has many applications including network prediction, entity resolution, and collaborative filtering. The pairwise kernel has been proposed for those purposes by several research groups independently, and has been used successfully in several fields. In this paper, we propose an efficient alternative which we call a Cartesian kernel. While the existing pairwise kernel (which we refer to as the Kronecker kernel) can be interpreted as the weighted adjacency matrix of the Kronecker product graph of two graphs, the Cartesian kernel can be interpreted as that of the Cartesian graph, which is more sparse than the Kronecker product graph. We discuss the generalization bounds of the two pairwise kernels by using eigenvalue analysis of the kernel matrices. Also, we consider the N-wise extensions of the two pairwise kernels. Experimental results show the Cartesian kernel is much faster than the Kronecker kernel, and at the same time, competitive with the Kronecker kernel in predictive performance.

  • A Fast Architecture Exploration Method for High Throughput IEEE 802.11e MAC Implementation Using SystemC

    Sung-Rok YOON  Min Li HUANG  Sangho SEO  Hiroshi OCHI  Sin-Chong PARK  

     
    LETTER-Terrestrial Wireless Communication/Broadcasting Technologies

      Vol:
    E93-B No:10
      Page(s):
    2833-2836

    This paper presents a fast and systematic architecture exploration method that realizes an efficient IEEE 802.11e based hardware/software co-design Medium Access Control (MAC) system architecture, which can achieve near theoretical MAC throughput for burst data transmission while complying with strict channel access time requirements. Our design approach uses SystemC based Transaction Level Modeling (TLM) framework to integrate reconfigurable general purpose computing and communication resources into the application model for rapid evaluation of core parameters, system performance, and application specific optimizations. As a result, a MAC system architecture that achieves a simulated MAC throughput of more than 100 Mbps when transmitted at 260 Mbps of Physical Layer (PHY) data rate is obtained. This result is verified with X-X-IMPLEMENTATION on a Xilinx Field-Programmable Gate Array (FPGA) board.

  • Accurate Human Detection by Appearance and Motion

    Shaopeng TANG  Satoshi GOTO  

     
    PAPER

      Vol:
    E93-D No:10
      Page(s):
    2728-2736

    In this paper, a human detection method is developed. An appearance based detector and a motion based detector are proposed respectively. A multi scale block histogram of template feature (MB-HOT) is used to detect human by the appearance. It integrates the gray value information and the gradient value information, and represents the relationship of three blocks. Experiment on INRIA dataset shows that this feature is more discriminative than other features, such as histogram of orientation gradient (HOG). A motion based feature is also proposed to capture the relative motion of human body. This feature is calculated in optical flow domain and experimental result in our dataset shows that this feature outperforms other motion based features. The detection responses obtained by two features are combined to reduce the false detection. Graphic process unit (GPU) based implementation is proposed to accelerate the calculation of two features, and make it suitable for real time applications.

  • Design of Sigmoid Activation Functions for Fuzzy Cognitive Maps via Lyapunov Stability Analysis

    In Keun LEE  Soon Hak KWON  

     
    LETTER-Biocybernetics, Neurocomputing

      Vol:
    E93-D No:10
      Page(s):
    2883-2886

    Fuzzy cognitive maps (FCMs) are used to support decision-making, and the decision processes are performed by inference of FCMs. The inference greatly depends on activation functions such as sigmoid function, hyperbolic tangent function, step function, and threshold linear function. However, the sigmoid functions widely used for decision-making processes have been designed by experts. Therefore, we propose a method for designing sigmoid functions through Lyapunov stability analysis. We show the usefulness of the proposed method through the experimental results in inference of FCMs using the designed sigmoid functions.

  • EPC: A Provably Secure Permutation Based Compression Function

    Nasour BAGHERI  Praveen GAURAVARAM  Majid NADERI  Babak SADEGHIYAN  

     
    LETTER-Cryptography and Information Security

      Vol:
    E93-A No:10
      Page(s):
    1833-1836

    The security of permutation-based hash functions in the ideal permutation model has been studied when the input-length of compression function is larger than the input-length of the permutation function. In this paper, we consider permutation based compression functions that have input lengths shorter than that of the permutation. Under this assumption, we propose a permutation based compression function and prove its security with respect to collision and (second) preimage attacks in the ideal permutation model. The proposed compression function can be seen as a generalization of the compression function of MD6 hash function.

  • Power Controlled Concurrent Transmissions in mmWave WPANs

    Yongsun KIM  Meejoung KIM  Wooyong LEE  Chul-Hee KANG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E93-B No:10
      Page(s):
    2808-2811

    This letter considers power-controlled transmission from directional antennas in mmWave wireless personal area network (WPAN) systems. The attributes of these systems are studied; these include the number of concurrent transmissions and the power consumption with different system parameters, such as the antenna's beamwidth and radiating efficiency. Numerical results are presented to show that the power controlled transmission enables more concurrent transmissions than the non-power controlled transmission. The results also show that the number of concurrent transmissions increases as the beamwidth and the path loss component become smaller and the antenna's radiating efficiency increases. In addition, the power controlled system generally uses less power than the non-power controlled transmission set up; the overall analysis is verified by simulation.

  • KMCD-IME (Keeping the Maximum Communication Distance and Initial Mutual Exclusion among Router Nodes) Topology Control Algorithm for Effective Routing in ZigBee Networks

    Saeyoung AHN  Sunshin AN  

     
    LETTER-Topology Control

      Vol:
    E93-A No:10
      Page(s):
    1744-1747

    In a ZigBee network, a finite address space is allocated to every potential parent device and a device may disallow a join request once this address space is exhausted. When a new node (child) requests to a coordinator (parent) to join a ZigBee network, the coordinator checks its address space. If it has sufficient address space, the coordinator accepts the new node as its child in the ZigBee network. If the new node has router capability (JoinAsRouter), it becomes a router in the ZigBee network. However, this association procedure makes ZigBee networks inefficient for routing, because the coordinator checks only the maximum and current numbers of child nodes. In the worst case, the network will be arranged so that the router nodes are crowded in the network. Therefore, we propose the KMCD-IME (Keeping the Maximum Communication Distance and Initial Mutual Exclusion among router nodes) algorithm with two additional conditions when a new node joins the ZigBee network. The first condition maintains the maximum communication distance between the new node and the would-be parent node. The second condition is the Initial Mutual Exclusion among router nodes. The router nodes are evenly spread across the network by KMCD-IME and an effective routing topology is formed. Therefore, the KMCD-IME algorithm extends the lifetime of the ZigBee network.

  • Bandwidth and Gain Enhancement of Microstrip Patch Antennas Using Reflective Metasurface Open Access

    Sarawuth CHAIMOOL  Kwok L. CHUNG  Prayoot AKKARAEKTHALIN  

     
    INVITED PAPER

      Vol:
    E93-B No:10
      Page(s):
    2496-2503

    Bandwidth and gain enhancement of microstrip patch antennas (MPAs) is proposed using reflective metasurface (RMS) as a superstrate. Two different types of the RMS, namely- the double split-ring resonator (DSR) and double closed-ring resonator (DCR) are separately investigated. The two antenna prototypes were manufactured, measured and compared. The experimental results confirm that the RMS loaded MPAs achieve high-gain as well as bandwidth improvement. The desinged antenna using the RMS as a superstrate has a high-gain of over 9.0 dBi and a wide impedance bandwidth of over 13%. The RMS is also utilized to achieve a thin antenna with a cavity height of 6 mm, which is equivalent to λ/21 at the center frequency of 2.45 GHz. At the same time, the cross polarization level and front-to-back ratio of these antennas are also examined.

  • Three-Dimensional Electromagnetic Scattering Analysis Using Constrained Interpolation Profile Method

    Jerdvisanop CHAKAROTHAI  Qiang CHEN  Kunio SAWAYA  

     
    PAPER-Electromagnetic Analysis

      Vol:
    E93-B No:10
      Page(s):
    2619-2628

    A characteristic-based constrained interpolation profile (CIP) method for solving three-dimensional, time-dependent Maxwell's equations is successfully developed. It is utilized to solve one-dimensional wave equations in the formulation of the Maxwell's equations. Calculation procedure of the CIP method for three-dimensional scattering analysis is described in details. Update equations for boundary conditions of a perfectly conducting (PEC) interface and a dielectric interface are formulated and obtained in explicit forms. Numerical analyses of electromagnetic scatterings of PEC sphere, dielectric sphere and PEC cube are performed and the scattering coefficient is calculated and compared with the Mie's analytic results. As a result, the scattering coefficients show good agreement with the Mie's results, which demonstrates the validity of the CIP method and the formulated update equations. It is also shown that the phase of the scattering coefficients determined by the CIP method are slightly more accurate than that of the FDTD method.

  • Extraction of Combined Features from Global/Local Statistics of Visual Words Using Relevant Operations

    Tetsu MATSUKAWA  Takio KURITA  

     
    LETTER-Image Recognition, Computer Vision

      Vol:
    E93-D No:10
      Page(s):
    2870-2874

    This paper presents a combined feature extraction method to improve the performance of bag-of-features image classification. We apply 10 relevant operations to global/local statistics of visual words. Because the pairwise combination of visual words is large, we apply feature selection methods including fisher discriminant criterion and L1-SVM. The effectiveness of the proposed method is confirmed through the experiment.

  • Reduced Complexity in Antenna Selection for Polarized MIMO System with SVD for the Practical MIMO Communication Channel Environment

    Maung SANN MAW  Iwao SASASE  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E93-B No:9
      Page(s):
    2389-2399

    In the conventional multi-input multi-output (MIMO) communication systems, most of the antenna selection methods considered are suitable only for spatially separated uni-polarized system under Rayleigh fading channel in non-line of sight (NLOS) condition. There have a few antenna selection schemes for the cross-polarized system in LOS condition and Ricean fading channel, and no antenna selection scheme for the MIMO channel with both LOS and NLOS. In the practical MIMO channel case, influence of LOS and NLOS conditions in the channel can vary from time to time according to the channel parameters and user movement in the system. Based on these influences and channel condition, uni-polarized system may outperform a cross-polarized. Thus, we should consider this kind of practical MIMO channel environment when developing the antenna selection scheme. Moreover, no research work has been done on reducing the complexity of antenna selection for this kind of practical MIMO channel environment. In this paper, reduced complexity in antenna selection is proposed to give the higher throughput in the practical MIMO channel environment. In the proposed scheme, suitable polarized antennas are selected based on the calculation of singular value decomposition (SVD) of channel matrix and then adaptive bit loading is applied. Simulation results show that throughput of the system can be improved under the constraint of target BER and total transmit power of the MIMO system.

3441-3460hit(8214hit)