The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] CTI(8214hit)

561-580hit(8214hit)

  • Two-Sided LPC-Based Speckle Noise Removal for Laser Speech Detection Systems

    Yahui WANG  Wenxi ZHANG  Xinxin KONG  Yongbiao WANG  Hongxin ZHANG  

     
    PAPER-Speech and Hearing

      Pubricized:
    2021/03/17
      Vol:
    E104-D No:6
      Page(s):
    850-862

    Laser speech detection uses a non-contact Laser Doppler Vibrometry (LDV)-based acoustic sensor to obtain speech signals by precisely measuring voice-generated surface vibrations. Over long distances, however, the detected signal is very weak and full of speckle noise. To enhance the quality and intelligibility of the detected signal, we designed a two-sided Linear Prediction Coding (LPC)-based locator and interpolator to detect and replace speckle noise. We first studied the characteristics of speckle noise in detected signals and developed a binary-state statistical model for speckle noise generation. A two-sided LPC-based locator was then designed to locate the polluted samples, composed of an inverse decorrelator, nonlinear filter and threshold estimator. This greatly improves the detectability of speckle noise and avoids false/missed detection by improving the noise-to-signal-ratio (NSR). Finally, samples from both sides of the speckle noise were used to estimate the parameters of the interpolator and to code samples for replacing the polluted samples. Real-world speckle noise removal experiments and simulation-based comparative experiments were conducted and the results show that the proposed method is better able to locate speckle noise in laser detected speech and highly effective at replacing it.

  • A Cyber Deception Method Based on Container Identity Information Anonymity

    Lingshu LI  Jiangxing WU  Wei ZENG  Xiaotao CHENG  

     
    LETTER-Information Network

      Pubricized:
    2021/03/02
      Vol:
    E104-D No:6
      Page(s):
    893-896

    Existing cyber deception technologies (e.g., operating system obfuscation) can effectively disturb attackers' network reconnaissance and hide fingerprint information of valuable cyber assets (e.g., containers). However, they exhibit ineffectiveness against skilled attackers. In this study, a proactive fingerprint deception method is proposed, termed as Continuously Anonymizing Containers' Fingerprints (CACF), which modifies the container's fingerprint in the cloud resource pool to satisfy the anonymization standard. As demonstrated by experimental results, the CACF can effectively increase the difficulty for attackers.

  • Building Change Detection by Using Past Map Information and Optical Aerial Images

    Motohiro TAKAGI  Kazuya HAYASE  Masaki KITAHARA  Jun SHIMAMURA  

     
    LETTER-Artificial Intelligence, Data Mining

      Pubricized:
    2021/03/23
      Vol:
    E104-D No:6
      Page(s):
    897-900

    This paper proposes a change detection method for buildings based on convolutional neural networks. The proposed method detects building changes from pairs of optical aerial images and past map information concerning buildings. Using high-resolution image pair and past map information seamlessly, the proposed method can capture the building areas more precisely compared to a conventional method. Our experimental results show that the proposed method outperforms the conventional change detection method that uses optical aerial images to detect building changes.

  • Multi-Objective Ant Lion Optimizer Based on Time Weight

    Yi LIU  Wei QIN  Jinhui ZHANG  Mengmeng LI  Qibin ZHENG  Jichuan WANG  

     
    LETTER-Artificial Intelligence, Data Mining

      Pubricized:
    2021/03/11
      Vol:
    E104-D No:6
      Page(s):
    901-904

    Multi-objective evolutionary algorithms are widely used in many engineering optimization problems and artificial intelligence applications. Ant lion optimizer is an outstanding evolutionary method, but two issues need to be solved to extend it to the multi-objective optimization field, one is how to update the Pareto archive, and the other is how to choose elite and ant lions from archive. We develop a novel multi-objective variant of ant lion optimizer in this paper. A new measure combining Pareto dominance relation and distance information of individuals is put forward and used to tackle the first issue. The concept of time weight is developed to handle the second problem. Besides, mutation operation is adopted on solutions in middle part of archive to further improve its performance. Eleven functions, other four algorithms and four indicators are taken to evaluate the new method. The results show that proposed algorithm has better performance and lower time complexity.

  • Differentially Private Neural Networks with Bounded Activation Function

    Kijung JUNG  Hyukki LEE  Yon Dohn CHUNG  

     
    LETTER-Artificial Intelligence, Data Mining

      Pubricized:
    2021/03/18
      Vol:
    E104-D No:6
      Page(s):
    905-908

    Deep learning has shown outstanding performance in various fields, and it is increasingly deployed in privacy-critical domains. If sensitive data in the deep learning model are exposed, it can cause serious privacy threats. To protect individual privacy, we propose a novel activation function and stochastic gradient descent for applying differential privacy to deep learning. Through experiments, we show that the proposed method can effectively protect the privacy and the performance of proposed method is better than the previous approaches.

  • A Partial Matching Convolution Neural Network for Source Retrieval of Plagiarism Detection

    Leilei KONG  Yong HAN  Haoliang QI  Zhongyuan HAN  

     
    LETTER-Natural Language Processing

      Pubricized:
    2021/03/03
      Vol:
    E104-D No:6
      Page(s):
    915-918

    Source retrieval is the primary task of plagiarism detection. It searches the documents that may be the sources of plagiarism to a suspicious document. The state-of-the-art approaches usually rely on the classical information retrieval models, such as the probability model or vector space model, to get the plagiarism sources. However, the goal of source retrieval is to obtain the source documents that contain the plagiarism parts of the suspicious document, rather than to rank the documents relevant to the whole suspicious document. To model the “partial matching” between documents, this paper proposes a Partial Matching Convolution Neural Network (PMCNN) for source retrieval. In detail, PMCNN exploits a sequential convolution neural network to extract the plagiarism patterns of contiguous text segments. The experimental results on PAN 2013 and PAN 2014 plagiarism source retrieval corpus show that PMCNN boosts the performance of source retrieval significantly, outperforming other state-of-the-art document models.

  • Light-YOLOv3: License Plate Detection in Multi-Vehicle Scenario

    Yuchao SUN  Qiao PENG  Dengyin ZHANG  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2021/02/22
      Vol:
    E104-D No:5
      Page(s):
    723-728

    With the development of the Internet of Vehicles, License plate detection technology is widely used, e.g., smart city and edge senor monitor. However, traditional license plate detection methods are based on the license plate edge detection, only suitable for limited situation, such as, wealthy light and favorable camera's angle. Fortunately, deep learning networks represented by YOLOv3 can solve the problem, relying on strict condition. Although YOLOv3 make it better to detect large targets, its low performance in detecting small targets and lack of the real-time interactively. Motivated by this, we present a faster and lightweight YOLOv3 model for multi-vehicle or under-illuminated images scenario. Generally, our model can serves as a guideline for optimizing neural network in multi-vehicle scenario.

  • Action Recognition Using Pose Data in a Distributed Environment over the Edge and Cloud

    Chikako TAKASAKI  Atsuko TAKEFUSA  Hidemoto NAKADA  Masato OGUCHI  

     
    PAPER

      Pubricized:
    2021/02/02
      Vol:
    E104-D No:5
      Page(s):
    539-550

    With the development of cameras and sensors and the spread of cloud computing, life logs can be easily acquired and stored in general households for the various services that utilize the logs. However, it is difficult to analyze moving images that are acquired by home sensors in real time using machine learning because the data size is too large and the computational complexity is too high. Moreover, collecting and accumulating in the cloud moving images that are captured at home and can be used to identify individuals may invade the privacy of application users. We propose a method of distributed processing over the edge and cloud that addresses the processing latency and the privacy concerns. On the edge (sensor) side, we extract feature vectors of human key points from moving images using OpenPose, which is a pose estimation library. On the cloud side, we recognize actions by machine learning using only the feature vectors. In this study, we compare the action recognition accuracies of multiple machine learning methods. In addition, we measure the analysis processing time at the sensor and the cloud to investigate the feasibility of recognizing actions in real time. Then, we evaluate the proposed system by comparing it with the 3D ResNet model in recognition experiments. The experimental results demonstrate that the action recognition accuracy is the highest when using LSTM and that the introduction of dropout in action recognition using 100 categories alleviates overfitting because the models can learn more generic human actions by increasing the variety of actions. In addition, it is demonstrated that preprocessing using OpenPose on the sensor side can substantially reduce the transfer quantity from the sensor to the cloud.

  • A Power Reduction Scheme with Partial Sleep Control of ONU Frame Buffer in Operation

    Hiroyuki UZAWA  Kazuhiko TERADA  Koyo NITTA  

     
    PAPER-Fiber-Optic Transmission for Communications

      Pubricized:
    2020/11/11
      Vol:
    E104-B No:5
      Page(s):
    481-489

    The power consumption of optical network units (ONUs) is a major issue in optical access networks. The downstream buffer is one of the largest power consumers among the functional blocks of an ONU. A cyclic sleep scheme for reducing power has been reported, which periodically powers off not only the downstream buffer but also other components, such as optical transceivers, when the idle period is long. However, when the idle period is short, it cannot power off those components even if the input data rate is low. Therefore, as continuous traffic, such as video, increases, the power-reduction effect decreases. To resolve this issue, we propose another sleep scheme in which the downstream buffer can be partially powered off by cooperative operation with an optical line terminal. Simulation and experimental results indicate that the proposed scheme reduces ONU power consumption without causing frame loss even while the ONU continuously receives traffic and the idle period is short.

  • A Low-Complexity QR Decomposition with Novel Modified RVD for MIMO Systems

    Lu SUN  Bin WU  Tianchun YE  

     
    LETTER-Digital Signal Processing

      Pubricized:
    2020/11/02
      Vol:
    E104-A No:5
      Page(s):
    814-817

    In this letter, a two-stage QR decomposition scheme based on Givens rotation with novel modified real-value decomposition (RVD) is presented. With the modified RVD applied to the result from complex Givens rotation at first stage, the number of non-zero terms needed to be eliminated by real Givens rotation at second stage decreases greatly and the computational complexity is thereby reduced significantly compared to the decomposition scheme with the conventional RVD. Besides, the proposed scheme is suitable for the hardware design of QR decomposition. Evaluation shows that the proposed QR decomposition scheme is superior to the related works in terms of computational complexity.

  • A Modified Whale Optimization Algorithm for Pattern Synthesis of Linear Antenna Array

    Wentao FENG  Dexiu HU  

     
    LETTER-Numerical Analysis and Optimization

      Pubricized:
    2020/11/09
      Vol:
    E104-A No:5
      Page(s):
    818-822

    A modified whale optimization algorithm (MWOA) with dynamic leader selection mechanism and novel population updating procedure is introduced for pattern synthesis of linear antenna array. The current best solution is dynamic changed for each whale agent to overcome premature with local optima in iteration. A hybrid crossover operator is embedded in original algorithm to improve the convergence accuracy of solution. Moreover, the flow of population updating is optimized to balance the exploitation and exploration ability. The modified algorithm is tested on a 28 elements uniform linear antenna array to reduce its side lobe lever and null depth lever. The simulation results show that MWOA algorithm can improve the performance of WOA obviously compared with other algorithms.

  • Parallel Peak Cancellation Signal-Based PAPR Reduction Method Using Null Space in MIMO Channel for MIMO-OFDM Transmission Open Access

    Taku SUZUKI  Mikihito SUZUKI  Kenichi HIGUCHI  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2020/11/20
      Vol:
    E104-B No:5
      Page(s):
    539-549

    This paper proposes a parallel peak cancellation (PC) process for the computational complexity-efficient algorithm called PC with a channel-null constraint (PCCNC) in the adaptive peak-to-average power ratio (PAPR) reduction method using the null space in a multiple-input multiple-output (MIMO) channel for MIMO-orthogonal frequency division multiplexing (OFDM) signals. By simultaneously adding multiple PC signals to the time-domain transmission signal vector, the required number of iterations of the iterative algorithm is effectively reduced along with the PAPR. We implement a constraint in which the PC signal is transmitted only to the null space in the MIMO channel by beamforming (BF). By doing so the data streams do not experience interference from the PC signal on the receiver side. Since the fast Fourier transform (FFT) and inverse FFT (IFFT) operations at each iteration are not required unlike the previous algorithm and thanks to the newly introduced parallel processing approach, the enhanced PCCNC algorithm reduces the required total computational complexity and number of iterations compared to the previous algorithms while achieving the same throughput-vs.-PAPR performance.

  • Collaborative Ontology Development and its Use for Video Annotation in Elderly Care Domain

    Satoshi NISHIMURA  Julio VIZCARRA  Yuichi OOTA  Ken FUKUDA  

     
    PAPER

      Pubricized:
    2021/02/04
      Vol:
    E104-D No:5
      Page(s):
    528-538

    Multimedia data and information management is an important task according to the development of media processing technology. Multimedia is a useful resource that people understand complex situations such as the elderly care domain. Appropriate annotation is beneficial in several tasks of information management, such as storing, retrieval, and summarization of data, from a semantic perspective. However, the metadata annotation for multimedia data remains problematic because metadata is obtained as a result of interpretation depending on domain-specific knowledge, and it needs well-controlled and comprehensive vocabulary for annotation. In this study, we proposed a collaborative methodology for developing ontologies and annotation with domain experts. The method includes (1) classification of knowledge types for collaborative construction of annotation data, (2) division of tasks among a team composed of domain experts, ontology engineers, and annotators, and (3) incremental approach to ontology development. We applied the proposed method to 11 videos on elderly care domain for the confirmation of its feasibility. We focused on annotation of actions occurring in these videos, thereby the annotated data is used as a support in evaluating staff skills. The application results show the content in the ontology during annotation increases monotonically. The number of “action concepts” is saturated and reused among the case studies. This demonstrates that the ontology is reusable and could represent various case studies by using a small number of “action concepts”. This study concludes by presenting lessons learnt from the case studies.

  • An Experimental Study across GPU DBMSes toward Cost-Effective Analytical Processing

    Young-Kyoon SUH  Seounghyeon KIM  Joo-Young LEE  Hawon CHU  Junyoung AN  Kyong-Ha LEE  

     
    LETTER

      Pubricized:
    2020/11/06
      Vol:
    E104-D No:5
      Page(s):
    551-555

    In this letter we analyze the economic worth of GPU on analytical processing of GPU-accelerated database management systems (DBMSes). To this end, we conducted rigorous experiments with TPC-H across three popular GPU DBMSes. Consequently, we show that co-processing with CPU and GPU in the GPU DBMSes was cost-effective despite exposed concerns.

  • Sparse Regression Model-Based Relearning Architecture for Shortening Learning Time in Traffic Prediction

    Takahiro HIRAYAMA  Takaya MIYAZAWA  Masahiro JIBIKI  Ved P. KAFLE  

     
    PAPER

      Pubricized:
    2021/02/16
      Vol:
    E104-D No:5
      Page(s):
    606-616

    Network function virtualization (NFV) enables network operators to flexibly provide diverse virtualized functions for services such as Internet of things (IoT) and mobile applications. To meet multiple quality of service (QoS) requirements against time-varying network environments, infrastructure providers must dynamically adjust the amount of computational resources, such as CPU, assigned to virtual network functions (VNFs). To provide agile resource control and adaptiveness, predicting the virtual server load via machine learning technologies is an effective approach to the proactive control of network systems. In this paper, we propose an adjustment mechanism for regressors based on forgetting and dynamic ensemble executed in a shorter time than that of our previous work. The framework includes a reducing training data method based on sparse model regression. By making a short list of training data derived from the sparse regression model, the relearning time can be reduced to about 57% without degrading provisioning accuracy.

  • An Evaluation of the Effectiveness of ECN with Fallback on the Internet

    Linzhi ZOU  Kenichi NAGAOKA  Chun-Xiang CHEN  

     
    PAPER

      Pubricized:
    2021/02/24
      Vol:
    E104-D No:5
      Page(s):
    628-636

    In this paper, we used the data set of domain names Global Top 1M provided by Alexa to analyze the effectiveness of Fallback in ECN. For the same test server, we first negotiate a connection with Not-ECN-Capable, and then negotiate a connection with ECN-Capable, if the sender does not receive the response to ECN-Capable negotiation from the receiver by the end of retransmission timeout, it will enter the Fallback state, and switch to negotiating a connection with Not-ECN-Capable. By extracting the header fields of the TCP/IP packets, we confirmed that in most regions, connectivity will be slightly improved after Fallback is enabled and Fallback has a positive effect on the total time of the whole access process. Meanwhile, we provided the updated information about the characteristics related to ECN with Fallback in different regions by considering the geographical region distribution of all targeted servers.

  • An Approach for Identifying Malicious Domain Names Generated by Dictionary-Based DGA Bots

    Akihiro SATOH  Yutaka NAKAMURA  Yutaka FUKUDA  Daiki NOBAYASHI  Takeshi IKENAGA  

     
    LETTER

      Pubricized:
    2021/02/17
      Vol:
    E104-D No:5
      Page(s):
    669-672

    Computer networks are facing serious threats from the emergence of sophisticated new DGA bots. These DGA bots have their own dictionary, from which they concatenate words to dynamically generate domain names that are difficult to distinguish from human-generated domain names. In this letter, we propose an approach for identifying the callback communications of DGA bots based on relations among the words that constitute the character string of each domain name. Our evaluation indicates high performance, with a recall of 0.9977 and a precision of 0.9869.

  • Curiosity Guided Fine-Tuning for Encoder-Decoder-Based Visual Forecasting

    Yuta KAMIKAWA  Atsushi HASHIMOTO  Motoharu SONOGASHIRA  Masaaki IIYAMA  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2021/02/02
      Vol:
    E104-D No:5
      Page(s):
    752-761

    An encoder-decoder (Enc-Dec) model is one of the fundamental architectures in many computer vision applications. One desired property of a trained Enc-Dec model is to feasibly encode (and decode) diverse input patterns. Aiming to obtain such a model, in this paper, we propose a simple method called curiosity-guided fine-tuning (CurioFT), which puts more weight on uncommon input patterns without explicitly knowing their frequency. In an experiment, we evaluated CurioFT in a task of future frame generation with the CUHK Avenue dataset and found that it reduced the mean square error by 7.4% for anomalous scenes, 4.8% for common scenes, and 6.6% in total. Some other experiments with the UCSD dataset further supported the reasonability of the proposed method.

  • A Fast Chroma Intra-Prediction Mode Decision Algorithm Based on Texture Characteristics for VVC

    Zhi LIU  Yifan SU  Shuzhong YANG  Mengmeng ZHANG  

     
    LETTER-Image Processing and Video Processing

      Pubricized:
    2021/02/05
      Vol:
    E104-D No:5
      Page(s):
    781-784

    Cross-component linear model (CCLM) chromaticity prediction is a new technique introduced in Versatile Video Coding (VVC), which utilizes the reconstructed luminance component to predict the chromaticity parts, and can improve the coding performance. However, it increases the coding complexity. In this paper, how to accelerate the chroma intra-prediction process is studied based on texture characteristics. Firstly, two observations have been found through experimental statistics for the process. One is that the choice of the chroma intra-prediction candidate modes is closely related to the texture complexity of the coding unit (CU), and the other is that whether the direct mode (DM) is selected is closely related to the texture similarity between current chromaticity CU and the corresponding luminance CU. Secondly, a fast chroma intra-prediction mode decision algorithm is proposed based on these observations. A modified metric named sum modulus difference (SMD) is introduced to measure the texture complexity of CU and guide the filtering of the irrelevant candidate modes. Meanwhile, the structural similarity index measurement (SSIM) is adopted to help judging the selection of the DM mode. The experimental results show that compared with the reference model VTM8.0, the proposed algorithm can reduce the coding time by 12.92% on average, and increases the BD-rate of Y, U, and V components by only 0.05%, 0.32%, and 0.29% respectively.

  • DORR: A DOR-Based Non-Blocking Optical Router for 3D Photonic Network-on-Chips

    Meaad FADHEL  Huaxi GU  Wenting WEI  

     
    PAPER-Computer System

      Pubricized:
    2021/01/27
      Vol:
    E104-D No:5
      Page(s):
    688-696

    Recently, researchers paid more attention on designing optical routers, since they are essential building blocks of all photonic interconnection architectures. Thus, improving them could lead to a spontaneous improvement in the overall performance of the network. Optical routers suffer from the dilemma of increased insertion loss and crosstalk, which upraises the power consumed as the network scales. In this paper, we propose a new 7×7 non-blocking optical router based on the Dimension Order Routing (DOR) algorithm. Moreover, we develop a method that can ensure the least number of MicroRing Resonators (MRRs) in an optical router. Therefore, by reducing these optical devices, the optical router proposed can decrease the crosstalk and insertion loss of the network. This optical router is evaluated and compared to Ye's router and the optimized crossbar for 3D Mesh network that uses XYZ routing algorithm. Unlike many other proposed routers, this paper evaluates optical routers not only from router level prospective yet also consider the overall network level condition. The appraisals show that our optical router can reduce the worst-case network insertion loss by almost 8.7%, 46.39%, 39.3%, and 41.4% compared to Ye's router, optimized crossbar, optimized universal OR, and Optimized VOTEX, respectively. Moreover, it decreases the Optical Signal-to-Noise Ratio (OSNR) worst-case by almost 27.92%, 88%, 77%, and 69.6% compared to Ye's router, optimized crossbar, optimized universal OR, and Optimized VOTEX, respectively. It also reduces the power consumption by 3.22%, 23.99%, 19.12%, and 20.18% compared to Ye's router, optimized crossbar, optimized universal OR, and Optimized VOTEX, respectively.

561-580hit(8214hit)