The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] CTI(8214hit)

501-520hit(8214hit)

  • Rectifier Circuit using High-Impedance Feedback Line for Microwave Wireless Power Transfer Systems Open Access

    Seiya MIZUNO  Ryosuke KASHIMURA  Tomohiro SEKI  Maki ARAI  Hiroshi OKAZAKI  Yasunori SUZUKI  

     
    PAPER

      Pubricized:
    2021/03/30
      Vol:
    E104-C No:10
      Page(s):
    552-558

    Research on wireless power transmission technology is being actively conducted, and studies on spatial transmission methods such as SSPS are currently underway for applications such as power transfer to the upper part of steel towers and power transfer to flying objects such as drones. To enable such applications, it is necessary to examine the configuration of the power-transfer and power-receiving antennas and to improve the RF-DC conversion efficiency (hereinafter referred to as conversion efficiency) of the rectifier circuit on the power-receiving antenna. To improve the conversion efficiency, various methods that utilize full-wave rectification rather than half-wave rectification have been proposed. However, these come with problems such as a complicated circuit structure, the need for additional capacitors, the selection of components at high frequencies, and a reduction in mounting yield. In this paper, we propose a method to improve the conversion efficiency by loading a high-impedance microstrip line as a feedback line in part of the rectifier circuit. We analyzed a class-F rectifier circuit using circuit analysis software and found that the conversion efficiency of the conventional configuration was 54.2%, but the proposed configuration was 69.3%. We also analyzed a measuring circuit made with a discrete configuration in the 5.8-GHz band and found that the conversion efficiency was 74.7% at 24dBm input.

  • Lossless Coding of HDR Color Images in a Floating Point Format Using Block-Adaptive Inter-Color Prediction

    Yuya KAMATAKI  Yusuke KAMEDA  Yasuyo KITA  Ichiro MATSUDA  Susumu ITOH  

     
    LETTER

      Pubricized:
    2021/05/17
      Vol:
    E104-D No:10
      Page(s):
    1572-1575

    This paper proposes a lossless coding method for HDR color images stored in a floating point format called Radiance RGBE. In this method, three mantissa and a common exponent parts, each of which is represented in 8-bit depth, are encoded using the block-adaptive prediction technique with some modifications considering the data structure.

  • Co-Head Pedestrian Detection in Crowded Scenes

    Chen CHEN  Maojun ZHANG  Hanlin TAN  Huaxin XIAO  

     
    LETTER-Image

      Pubricized:
    2021/03/26
      Vol:
    E104-A No:10
      Page(s):
    1440-1444

    Pedestrian detection is an essential but challenging task in computer vision, especially in crowded scenes due to heavy intra-class occlusion. In human visual system, head information can be used to locate pedestrian in a crowd because it is more stable and less likely to be occluded. Inspired by this clue, we propose a dual-task detector which detects head and human body simultaneously. Concretely, we estimate human body candidates from head regions with statistical head-body ratio. A head-body alignment map is proposed to perform relational learning between human bodies and heads based on their inherent correlation. We leverage the head information as a strict detection criterion to suppress common false positives of pedestrian detection via a novel pull-push loss. We validate the effectiveness of the proposed method on the CrowdHuman and CityPersons benchmarks. Experimental results demonstrate that the proposed method achieves impressive performance in detecting heavy-occluded pedestrians with little additional computation cost.

  • Per-Pixel Water Detection on Surfaces with Unknown Reflectance

    Chao WANG  Michihiko OKUYAMA  Ryo MATSUOKA  Takahiro OKABE  

     
    PAPER

      Pubricized:
    2021/07/06
      Vol:
    E104-D No:10
      Page(s):
    1555-1562

    Water detection is important for machine vision applications such as visual inspection and robot motion planning. In this paper, we propose an approach to per-pixel water detection on unknown surfaces with a hyperspectral image. Our proposed method is based on the water spectral characteristics: water is transparent for visible light but translucent/opaque for near-infrared light and therefore the apparent near-infrared spectral reflectance of a surface is smaller than the original one when water is present on it. Specifically, we use a linear combination of a small number of basis vector to approximate the spectral reflectance and estimate the original near-infrared reflectance from the visible reflectance (which does not depend on the presence or absence of water) to detect water. We conducted a number of experiments using real images and show that our method, which estimates near-infrared spectral reflectance based on the visible spectral reflectance, has better performance than existing techniques.

  • Noisy Localization Annotation Refinement for Object Detection

    Jiafeng MAO  Qing YU  Kiyoharu AIZAWA  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2021/05/25
      Vol:
    E104-D No:9
      Page(s):
    1478-1485

    Well annotated dataset is crucial to the training of object detectors. However, the production of finely annotated datasets for object detection tasks is extremely labor-intensive, therefore, cloud sourcing is often used to create datasets, which leads to these datasets tending to contain incorrect annotations such as inaccurate localization bounding boxes. In this study, we highlight a problem of object detection with noisy bounding box annotations and show that these noisy annotations are harmful to the performance of deep neural networks. To solve this problem, we further propose a framework to allow the network to modify the noisy datasets by alternating refinement. The experimental results demonstrate that our proposed framework can significantly alleviate the influences of noise on model performance.

  • Orthogonal Chaotic Binary Sequences Based on Tent Map and Walsh Functions

    Akio TSUNEDA  

     
    LETTER-Nonlinear Problems

      Pubricized:
    2021/03/16
      Vol:
    E104-A No:9
      Page(s):
    1349-1352

    In this letter, we will prove that chaotic binary sequences generated by the tent map and Walsh functions are i.i.d. (independent and identically distributed) and orthogonal to each other.

  • Receiver Selective Opening CCA Secure Public Key Encryption from Various Assumptions

    Yi LU  Keisuke HARA  Keisuke TANAKA  

     
    PAPER-Cryptography and Information Security

      Pubricized:
    2021/03/16
      Vol:
    E104-A No:9
      Page(s):
    1206-1218

    Receiver selective opening (RSO) attack for public key encryption (PKE) captures a situation where one sender sends messages to multiple receivers, an adversary can corrupt a set of receivers and get their messages and secret keys. Security against RSO attack for a PKE scheme ensures confidentiality of other uncorrupted receivers' ciphertexts. Among all of the RSO security notions, simulation-based RSO security against chosen ciphertext attack (SIM-RSO-CCA security) is the strongest notion. In this paper, we explore constructions of SIM-RSO-CCA secure PKE from various computational assumptions. Toward this goal, we show that a SIM-RSO-CCA secure PKE scheme can be constructed based on an IND-CPA secure PKE scheme and a designated-verifier non-interactive zero-knowledge (DV-NIZK) argument satisfying one-time simulation soundness. Moreover, we give the first construction of DV-NIZK argument satisfying one-time simulation soundness. Consequently, through our generic construction, we obtain the first SIM-RSO-CCA secure PKE scheme under the computational Diffie-Hellman (CDH) or learning parity with noise (LPN) assumption.

  • A New 10-Variable Cubic Bent Function Outside the Completed Maiorana-McFarland Class

    Yanjun LI  Haibin KAN  Jie PENG  Chik How TAN  Baixiang LIU  

     
    LETTER-Cryptography and Information Security

      Pubricized:
    2021/02/22
      Vol:
    E104-A No:9
      Page(s):
    1353-1356

    In this letter, we present a construction of bent functions which generalizes a work of Zhang et al. in 2016. Based on that, we obtain a cubic bent function in 10 variables and prove that, it has no affine derivative and does not belong to the completed Maiorana-McFarland class, which is opposite to all 6/8-variable cubic bent functions as they are inside the completed Maiorana-McFarland class. This is the first time a theoretical proof is given to show that the cubic bent functions in 10 variables can be outside the completed Maiorana-McFarland class. Before that, only a sporadic example with such properties was known by computer search. We also show that our function is EA-inequivalent to that sporadic one.

  • The Explicit Dual of Leander's Monomial Bent Function

    Yanjun LI  Haibin KAN  Jie PENG  Chik How TAN  Baixiang LIU  

     
    LETTER-Cryptography and Information Security

      Pubricized:
    2021/03/08
      Vol:
    E104-A No:9
      Page(s):
    1357-1360

    Permutation polynomials and their compositional inverses are crucial for construction of Maiorana-McFarland bent functions and their dual functions, which have the optimal nonlinearity for resisting against the linear attack on block ciphers and on stream ciphers. In this letter, we give the explicit compositional inverse of the permutation binomial $f(z)=z^{2^{r}+2}+alpha zinmathbb{F}_{2^{2r}}[z]$. Based on that, we obtain the dual of monomial bent function $f(x)={ m Tr}_1^{4r}(x^{2^{2r}+2^{r+1}+1})$. Our result suggests that the dual of f is not a monomial any more, and it is not always EA-equivalent to f.

  • Dynamic Terminal Connection Control Using Multi-Radio Unlicensed Access for 5G Evolution and Beyond

    Toshiro NAKAHIRA  Tomoki MURAKAMI  Hirantha ABEYSEKERA  Koichi ISHIHARA  Motoharu SASAKI  Takatsune MORIYAMA  Yasushi TAKATORI  

     
    PAPER

      Pubricized:
    2021/03/23
      Vol:
    E104-B No:9
      Page(s):
    1138-1146

    In this paper, we examine techniques for improving the throughput of unlicensed radio systems such as wireless LANs (WLANs) to take advantage of multi-radio access to mobile broadband, which will be important in 5G evolution and beyond. In WLANs, throughput is reduced due to mixed standards and the degraded quality of certain frequency channels, and thus control techniques and an architecture that provide efficient control over WLANs are needed to solve the problem. We have proposed a technique to control the terminal connection dynamically by using the multi-radio of the AP. Furthermore, we have proposed a new control architecture called WiSMA for efficient control of WLANs. Experiments show that the proposed method can solve those problems and improve the WLAN throughput.

  • Anomaly Prediction for Wind Turbines Using an Autoencoder Based on Power-Curve Filtering

    Masaki TAKANASHI  Shu-ichi SATO  Kentaro INDO  Nozomu NISHIHARA  Hiroto ICHIKAWA  Hirohisa WATANABE  

     
    LETTER-Artificial Intelligence, Data Mining

      Pubricized:
    2021/06/07
      Vol:
    E104-D No:9
      Page(s):
    1506-1509

    Predicting the malfunction timing of wind turbines is essential for maintaining the high profitability of the wind power generation business. Machine learning methods have been studied using condition monitoring system data, such as vibration data, and supervisory control and data acquisition (SCADA) data, to detect and predict anomalies in wind turbines automatically. Autoencoder-based techniques have attracted significant interest in the detection or prediction of anomalies through unsupervised learning, in which the anomaly pattern is unknown. Although autoencoder-based techniques have been proven to detect anomalies effectively using relatively stable SCADA data, they perform poorly in the case of deteriorated SCADA data. In this letter, we propose a power-curve filtering method, which is a preprocessing technique used before the application of an autoencoder-based technique, to mitigate the dirtiness of SCADA data and improve the prediction performance of wind turbine degradation. We have evaluated its performance using SCADA data obtained from a real wind-farm.

  • A Virtual Pre-Connection Scheme Enabling Fast Connection to Local Spot Cell in Private Cellular Network

    Kazuo IBUKA  Hikaru KAWASAKI  Takeshi MATSUMURA  Fumihide KOJIMA  

     
    PAPER

      Pubricized:
    2021/03/08
      Vol:
    E104-B No:9
      Page(s):
    1129-1137

    In the 5th generation mobile communication system (5G), super high frequency (SHF) bands such as 28GHz will be used in many scenarios. In Japan, a local 5G working group has been established to apply advanced 5G technologies to private networks and is working to encourage local companies and municipalities to introduce new services for local needs. Meanwhile, the smaller size of the 28GHz band cells creates the difficulties when establishing deployment areas for homogeneous networks. In general, heterogeneous network approach with the combination of macro-cell and micro-cell have been considered practical and applied by the giant telecommunication operators. However, private network operators have difficulty in deploying both micro- and macro-cells due to the cost issue. Without the assistance of macro-cells, local spot cells with a small service area may not be able to start services while high-speed mobile users are staying in the service area. In this paper, we propose a virtual pre-connection scheme allowing fast connection to local spot cells without the assistance of macro-cells. In addition, we confirm that the proposed scheme can reduce the cell search time required when entering a local spot cell from 100 seconds or more to less than 1 second, and can reduce the loss of connection opportunities to local spot cells for high-speed mobile users.

  • Magnetic Josephson Junctions: New Phenomena and Physics with Diluted Alloy, Conventional Ferromagnet, and Multilayer Barriers Open Access

    Taro YAMASHITA  

     
    INVITED PAPER

      Pubricized:
    2021/03/17
      Vol:
    E104-C No:9
      Page(s):
    422-428

    We review a new superconducting element, called “magnetic Josephson junctions” with a magnetic barrier instead of the insulating barrier of conventional Josephson junctions. We classify the three types of magnetic barrier, i.e., diluted alloy, conventional ferromagnet, and magnetic multilayer barriers, and introduce various new physics such as the π-state arising in magnetic Josephson junctions due to the interaction between superconductivity and magnetism.

  • Character Design Generation System Using Multiple Users' Gaze Information

    Hiroshi TAKENOUCHI  Masataka TOKUMARU  

     
    PAPER-Human-computer Interaction

      Pubricized:
    2021/05/25
      Vol:
    E104-D No:9
      Page(s):
    1459-1466

    We investigate an interactive evolutionary computation (IEC) using multiple users' gaze information when users partially participate in each design evaluation. Many previous IEC systems have a problem that user evaluation loads are too large. Hence, we proposed to employ user gaze information for evaluating designs generated by IEC systems in order to solve this problem. In this proposed system, users just view the presented designs, not assess, then the system automatically creates users' favorite designs. With the user's gaze information, the proposed system generates coordination that can satisfy many users. In our previous study, we verified the effectiveness of the proposed system from a real system operation viewpoint. However, we did not consider the fluctuation of the users during a solution candidate evaluation. In the actual operation of the proposed system, users may change during the process due to the user interchange. Therefore, in this study, we verify the effectiveness of the proposed system when varying the users participating in each evaluation for each generation. In the experiment, we employ two types of situations as assumed in real environments. The first situation changes the number of users evaluating the designs for each generation. The second situation employs various users from the predefined population to evaluate the designs for each generation. From the experimental results in the first situation, we confirm that, despite the change in the number of users during the solution candidate evaluation, the proposed system can generate coordination to satisfy many users. Also, from the results in the second situation, we verify that the proposed system can also generate coordination which both users who participate in the coordination evaluation can more satisfy.

  • Gated Convolutional Neural Networks with Sentence-Related Selection for Distantly Supervised Relation Extraction

    Yufeng CHEN  Siqi LI  Xingya LI  Jinan XU  Jian LIU  

     
    PAPER-Natural Language Processing

      Pubricized:
    2021/06/01
      Vol:
    E104-D No:9
      Page(s):
    1486-1495

    Relation extraction is one of the key basic tasks in natural language processing in which distant supervision is widely used for obtaining large-scale labeled data without expensive labor cost. However, the automatically generated data contains massive noise because of the wrong labeling problem in distant supervision. To address this problem, the existing research work mainly focuses on removing sentence-level noise with various sentence selection strategies, which however could be incompetent for disposing word-level noise. In this paper, we propose a novel neural framework considering both intra-sentence and inter-sentence relevance to deal with word-level and sentence-level noise from distant supervision, which is denoted as Sentence-Related Gated Piecewise Convolutional Neural Networks (SR-GPCNN). Specifically, 1) a gate mechanism with multi-head self-attention is adopted to reduce word-level noise inside sentences; 2) a soft-label strategy is utilized to alleviate wrong-labeling propagation problem; and 3) a sentence-related selection model is designed to filter sentence-level noise further. The extensive experimental results on NYT dataset demonstrate that our approach filters word-level and sentence-level noise effectively, thus significantly outperforms all the baseline models in terms of both AUC and top-n precision metrics.

  • Indifferentiability of SKINNY-HASH Internal Functions

    Akinori HOSOYAMADA  Tetsu IWATA  

     
    PAPER-Cryptography and Information Security

      Pubricized:
    2021/03/10
      Vol:
    E104-A No:9
      Page(s):
    1156-1162

    We provide a formal proof for the indifferentiability of SKINNY-HASH internal function from a random oracle. SKINNY-HASH is a family of sponge-based hash functions that use functions (instead of permutations) as primitives, and it was selected as one of the second round candidates of the NIST lightweight cryptography competition. Its internal function is constructed from the tweakable block cipher SKINNY. The construction of the internal function is very simple and the designers claim n-bit security, where n is the block length of SKINNY. However, a formal security proof of this claim is not given in the original specification of SKINNY-HASH. In this paper, we formally prove that the internal function of SKINNY-HASH has n-bit security, i.e., it is indifferentiable from a random oracle up to O(2n) queries, substantiating the security claim of the designers.

  • Optic Disc Detection Based on Saliency Detection and Attention Convolutional Neural Networks

    Ying WANG  Xiaosheng YU  Chengdong WU  

     
    LETTER-Image

      Pubricized:
    2021/03/23
      Vol:
    E104-A No:9
      Page(s):
    1370-1374

    The automatic analysis of retinal fundus images is of great significance in large-scale ocular pathologies screening, of which optic disc (OD) location is a prerequisite step. In this paper, we propose a method based on saliency detection and attention convolutional neural network for OD detection. Firstly, the wavelet transform based saliency detection method is used to detect the OD candidate regions to the maximum extent such that the intensity, edge and texture features of the fundus images are all considered into the OD detection process. Then, the attention mechanism that can emphasize the representation of OD region is combined into the dense network. Finally, it is determined whether the detected candidate regions are OD region or non-OD region. The proposed method is implemented on DIARETDB0, DIARETDB1 and MESSIDOR datasets, the experimental results of which demonstrate its superiority and robustness.

  • Likelihood-Based Metric for Gibbs Sampling Turbo MIMO Detection Open Access

    Yutaro KOBAYASHI  Yukitoshi SANADA  

     
    PAPER

      Pubricized:
    2021/03/23
      Vol:
    E104-B No:9
      Page(s):
    1046-1053

    In a multiple-input multiple-output (MIMO) system, maximum likelihood detection (MLD) is the best demodulation scheme if no a priori information is available. However, the complexity of MLD increases exponentially with the number of signal streams. Therefore, various demodulation schemes with less complexity have been proposed and some of those schemes show performance close to that of MLD. One kind of those schemes uses a Gibbs sampling (GS) algorithm. GS MIMO detection that combines feedback from turbo decoding has been proposed. In this scheme, the accuracy of GS MIMO detection is improved by feeding back loglikelihood ratios (LLRs) from a turbo decoder. In this paper, GS MIMO detection using only feedback LLRs from a turbo decoder is proposed. Through extrinsic information transfer (EXIT) chart analysis, it is shown that the EXIT curves with and without metrics calculated from received signals overlap as the feedback LLR values increase. Therefore, the proposed scheme calculates the metrics from received signals only for the first GS MIMO detection and the selection probabilities of GS MIMO detection in the following iterations are calculated based only on the LLRs from turbo decoders. Numerical results obtained through computer simulation show that the performance of proposed GS turbo MIMO detection is worse than that of conventional GS turbo MIMO detection when the number of GS iterations is small. However the performance improves as the number of GS iterations increases. When the number of GS iterations is 30 or more, the bit error rate (BER) performance of the proposed scheme is equivalent to that of the conventional scheme. Therefore, the proposed scheme can reduce the computational complexity of selection probability calculation in GS turbo MIMO detection.

  • A Narrowband Active Noise Control System with a Frequency Estimator

    Lei WANG  Kean CHEN  Jian XU  

     
    PAPER-Noise and Vibration

      Pubricized:
    2021/03/17
      Vol:
    E104-A No:9
      Page(s):
    1284-1292

    A narrowband active noise control (NANC) system is very effective for controlling low-frequency periodic noise. A frequency mismatch (FM) with the reference signal will degrade the performance or even cause the system to diverge. To deal with an FM and obtain an accurate reference signal, NANC systems often employ a frequency estimator. Combining an autoregressive predictive filter with a variable step size (VSS) all-pass-based lattice adaptive notch filter (ANF), a new frequency estimation method is proposed that does not require prior information of the primary signal, and the convergence characteristics are much improved. Simulation results show that the designed frequency estimator has a higher accuracy than the conventional algorithm. Finally, hardware experiments are carried out to verify the noise reduction effect.

  • Planarized Nb 4-Layer Fabrication Process for Superconducting Integrated Circuits and Its Fabricated Device Evaluation

    Shuichi NAGASAWA  Masamitsu TANAKA  Naoki TAKEUCHI  Yuki YAMANASHI  Shigeyuki MIYAJIMA  Fumihiro CHINA  Taiki YAMAE  Koki YAMAZAKI  Yuta SOMEI  Naonori SEGA  Yoshinao MIZUGAKI  Hiroaki MYOREN  Hirotaka TERAI  Mutsuo HIDAKA  Nobuyuki YOSHIKAWA  Akira FUJIMAKI  

     
    PAPER

      Pubricized:
    2021/03/17
      Vol:
    E104-C No:9
      Page(s):
    435-445

    We developed a Nb 4-layer process for fabricating superconducting integrated circuits that involves using caldera planarization to increase the flexibility and reliability of the fabrication process. We call this process the planarized high-speed standard process (PHSTP). Planarization enables us to flexibly adjust most of the Nb and SiO2 film thicknesses; we can select reduced film thicknesses to obtain larger mutual coupling depending on the application. It also reduces the risk of intra-layer shorts due to etching residues at the step-edge regions. We describe the detailed process flows of the planarization for the Josephson junction layer and the evaluation of devices fabricated with PHSTP. The results indicated no short defects or degradation in junction characteristics and good agreement between designed and measured inductances and resistances. We also developed single-flux-quantum (SFQ) and adiabatic quantum-flux-parametron (AQFP) logic cell libraries and tested circuits fabricated with PHSTP. We found that the designed circuits operated correctly. The SFQ shift-registers fabricated using PHSTP showed a high yield. Numerical simulation results indicate that the AQFP gates with increased mutual coupling by the planarized layer structure increase the maximum interconnect length between gates.

501-520hit(8214hit)