The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] CTI(8214hit)

981-1000hit(8214hit)

  • Two Novel Autocorrelation Based Methods for Frequency Estimation of Real Sinusoid Signal

    Kai WANG  Man ZHOU  Lin ZHOU  Jiaying TU  

     
    PAPER-Digital Signal Processing

      Vol:
    E102-A No:4
      Page(s):
    616-623

    Many autocorrelation-based frequency estimation algorithms have been proposed. However, some of them cannot construct a strict linear prediction (LP) property among the adjacent autocorrelation lags, which affects the estimators' performance. To improve the precision of frequency estimation, two novel autocorrelation based frequency estimation methods of the real sinusoid signal in additive white Gaussian noise (AWGN) are proposed in this paper. Firstly, a simple method is introduced to transform the real sinusoid signal into the noncircular signal. Secondly, the autocorrelation of the noncircular signal is analyzed and a strict LP property is constructed among the adjacent autocorrelation lags of the noncircular signal. Thirdly, the least squares (LS) and reformed Pisarenko harmonic decomposer (RPHD) frameworks are employed to improve estimation accuracy. The simulation results match well with the theoretical values. In addition, computer simulations demonstrate that the proposed algorithm provides high estimation accuracy and good noise suppression capability.

  • A Parallel Flow Monitoring Technique That Achieves Accurate Delay Measurement

    Kohei WATABE  Shintaro HIRAKAWA  Kenji NAKAGAWA  

     
    PAPER-Network Management/Operation

      Pubricized:
    2018/10/03
      Vol:
    E102-B No:4
      Page(s):
    865-875

    In this paper, a parallel flow monitoring technique that achieves accurate measurement of end-to-end delay of networks is proposed. In network monitoring tasks, network researchers and practitioners usually monitor multiple probe flows to measure delays on multiple paths in parallel. However, when they measure an end-to-end delay on a path, information of flows except for the flow along the path is not utilized in the conventional method. Generally, paths of flows share common parts in parallel monitoring. In the proposed method, information of flows on paths that share common parts, utilizes to measure delay on a path by partially converting the observation results of a flow to those of another flow. We perform simulations to confirm that the observation results of 72 parallel flows of active measurement are appropriately converted between each other. When the 99th-percentile of the end-to-end delay for each flow are measured, the accuracy of the proposed method is doubled compared with the conventional method.

  • Transmit Beam Selection Scheme for Massive MIMO Using Expected Beam Responses

    Yoshihito KUBO  Yukitoshi SANADA  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2018/10/12
      Vol:
    E102-B No:4
      Page(s):
    913-920

    Massive multiple-input multiple-output (MIMO) realizes simultaneous transmission to a large number of mobile stations (MSs) and improves frequency utilization efficiency. It is drawing attention as the key technology of the fifth-generation (5G) mobile communication systems. The 5G system is going to be implemented in a high frequency band and massive MIMO beamforming (BF) is applied to compensate propagation loss. In the conventional BF scheme, a transmit beam is selected based on the power of received signals over subcarriers. The signal on a different subcarrier is transmitted with a different directivity. To improve the accuracy of beam selection, this paper proposes a transmit beam selection scheme for massive MIMO. The proposed scheme calculates the expected responses of the signals over the subcarriers based on the relative directivity between a base station (BS) and a MS. The MS calculates the correlation between the received signals and each of the expected response sequences. It then selects the beam with the highest correlation value. It is shown in this paper that the proposed scheme can improve the average signal-to-noise ratio of a received signal by about 1.5dB as compared with that of the power based search scheme. It is also shown that the proposed scheme with limited response coefficients can reduce the computational complexity by a factor of 1/100 while it still increases the average SNR by about 1.0dB.

  • Near-Field Chipless RFID Tag System Using Inductive Coupling Between a Multimode Resonator and Detection Probes

    Fuminori SAKAI  Mitsuo MAKIMOTO  Koji WADA  

     
    PAPER

      Pubricized:
    2018/10/15
      Vol:
    E102-B No:4
      Page(s):
    722-731

    Chipless RFID tags that use the higher-mode resonances of a transmission line resonator are presented in this paper. We have proposed multimode stepped impedance resonators (SIRs) for this application and reported the fundamental characteristics of an experimental system composed of multimode SIRs with open-circuited ends and a near-field electromagnetic detector using capacitive coupling (electric field) probes for the detector. To improve the frequency response and widen the detection range, we introduced multimode SIRs with short-circuited ends and inductive coupling (magnetic field) probes and measured their properties. To reduce the size of the tag and reader, we examined the frequency responses and found that the optimal configuration consisted of C-shaped tags and detector probes with a spatially orthogonal arrangement. The experimental tag system showed good frequency responses, detection range, and frequency detection accuracy. In particular, the spacing between the tag resonator and the transmission line of the probe, which corresponds to the detection distance, was 5mm or more, and was at least 10 times greater than that of previously reported RFID tag systems using near-field electromagnetic coupling.

  • Simplified Iterative Decoder for Polybinary-Shaped Optical Signals in Super-Nyquist Wavelength Division Multiplexed Systems

    Shuai YUAN  Koji IGARASHI  

     
    PAPER-Fiber-Optic Transmission for Communications

      Pubricized:
    2018/10/11
      Vol:
    E102-B No:4
      Page(s):
    818-823

    In super-Nyquist wavelength division multiplexed systems, performance of forward error correction (FEC) can be improved by an iterative decoder between a maximum likelihood decoder for polybinary shaping and an FEC decoder. The typical iterative decoder includes not only the iteration between the first and second decoders but also the internal iteration within the FEC decoder. Such two-fold loop configuration would increase the computational complexity for decoding. In this paper, we propose the simplified iterative decoder, where the internal iteration in the FEC decoder is not performed, reducing the computational complexity. We numerically evaluate the bit-error rate performance of polybinary-shaped QPSK signals in the simplified iterative decoder. The numerical results show that the FEC performance can be improved in the simplified scheme, compared with the typical iterative decoder. In addition, the performance of the simplified iterative decoder has been investigated by the extrinsic information transfer (EXIT) chart.

  • Periodic Reactance Time Functions for 2-Element ESPAR Antennas Applied to 2-Output SIMO/MIMO Receivers

    Kosei KAWANO  Masato SAITO  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2018/10/22
      Vol:
    E102-B No:4
      Page(s):
    930-939

    In this paper, we propose a periodic reactance time function for 2-element electronically steerable passive array radiator (ESPAR) antennas applicable to the receivers of both single-input multiple-output (SIMO) and multiple-input multiple-output (MIMO) systems with 2 outputs. Based on the proposed function, we evaluate the power patterns of the antenna for various distances between two antenna elements. Moreover, for the distances, we discuss the correlation properties and the strength of the two outputs to find the appropriate distance for the receiver. From the discussions, we can conclude that distances from 0.1 to 0.35 times the wavelength are effective in terms of receive diversity.

  • Low-Profile Supergain Antenna Composed of Asymmetric Dipole Elements Backed by Planar Reflector for IoT Applications Open Access

    Suguru KOJIMA  Takuji ARIMA  Toru UNO  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2018/10/15
      Vol:
    E102-B No:4
      Page(s):
    884-890

    This paper proposes a low-profile unidirectional supergain antenna applicable to wireless communication devices such as mobile terminals, the Internet of Things and so on. The antennas used for such systems are required to be not only electrically low-profile but also unsusceptible to surrounding objects such as human body and/or electrical equipment. The proposed antenna achieves both requirements due to its supergain property using planar elements and a closely placed planar reflector. The primary antenna is an asymmetric dipole type, and consists of a monopole element mounted on an edge of a rectangular conducting plane. Both elements are placed on a dielectric substrate backed by the planar reflector. It is numerically and experimentally shown that the supergain property is achieved by optimizing the geometrical parameters of the antenna. It is also shown that the impedance characteristics can be successfully adjusted by changing the lengths of the ground plane element and the monopole element. Thus, no additional impedance matching circuit is necessary. Furthermore, it is shown that surrounding objects have insignificant impact on the antenna performance.

  • Locality Preserved Joint Nonnegative Matrix Factorization for Speech Emotion Recognition

    Seksan MATHULAPRANGSAN  Yuan-Shan LEE  Jia-Ching WANG  

     
    LETTER

      Pubricized:
    2019/01/28
      Vol:
    E102-D No:4
      Page(s):
    821-825

    This study presents a joint dictionary learning approach for speech emotion recognition named locality preserved joint nonnegative matrix factorization (LP-JNMF). The learned representations are shared between the learned dictionaries and annotation matrix. Moreover, a locality penalty term is incorporated into the objective function. Thus, the system's discriminability is further improved.

  • Detecting Communities and Correlated Attribute Clusters on Multi-Attributed Graphs

    Hiroyoshi ITO  Takahiro KOMAMIZU  Toshiyuki AMAGASA  Hiroyuki KITAGAWA  

     
    PAPER

      Pubricized:
    2019/02/04
      Vol:
    E102-D No:4
      Page(s):
    810-820

    Multi-attributed graphs, in which each node is characterized by multiple types of attributes, are ubiquitous in the real world. Detection and characterization of communities of nodes could have a significant impact on various applications. Although previous studies have attempted to tackle this task, it is still challenging due to difficulties in the integration of graph structures with multiple attributes and the presence of noises in the graphs. Therefore, in this study, we have focused on clusters of attribute values and strong correlations between communities and attribute-value clusters. The graph clustering methodology adopted in the proposed study involves Community detection, Attribute-value clustering, and deriving Relationships between communities and attribute-value clusters (CAR for short). Based on these concepts, the proposed multi-attributed graph clustering is modeled as CAR-clustering. To achieve CAR-clustering, a novel algorithm named CARNMF is developed based on non-negative matrix factorization (NMF) that can detect CAR in a cooperative manner. Results obtained from experiments using real-world datasets show that the CARNMF can detect communities and attribute-value clusters more accurately than existing comparable methods. Furthermore, clustering results obtained using the CARNMF indicate that CARNMF can successfully detect informative communities with meaningful semantic descriptions through correlations between communities and attribute-value clusters.

  • Learning of Nonnegative Matrix Factorization Models for Inconsistent Resolution Dataset Analysis

    Masahiro KOHJIMA  Tatsushi MATSUBAYASHI  Hiroshi SAWADA  

     
    INVITED PAPER

      Pubricized:
    2019/02/04
      Vol:
    E102-D No:4
      Page(s):
    715-723

    Due to the need to protect personal information and the impracticality of exhaustive data collection, there is increasing need to deal with datasets with various levels of granularity, such as user-individual data and user-group data. In this study, we propose a new method for jointly analyzing multiple datasets with different granularity. The proposed method is a probabilistic model based on nonnegative matrix factorization, which is derived by introducing latent variables that indicate the high-resolution data underlying the low-resolution data. Experiments on purchase logs show that the proposed method has a better performance than the existing methods. Furthermore, by deriving an extension of the proposed method, we show that the proposed method is a new fundamental approach for analyzing datasets with different granularity.

  • Secure Communication Using Scramble Phase Assisting WFRFT

    Yuan LIANG  Xinyu DA  Ruiyang XU  Lei NI  Dong ZHAI  Yu PAN  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2018/10/03
      Vol:
    E102-B No:4
      Page(s):
    779-789

    In this paper, a scramble phase assisting weighted-type fractional Fourier transform (SPA-WFRFT) based system is proposed to guarantee the communication's security. The original transmitting signal is divided into two parts. The first part is modulated by WFRFT and subsequently makes up the constellation beguiling. The other part is used to generate the scramble phase and also to assist in the encryption of the WFRFT modulated signal dynamically. The novel constellation optimal model is built and solved through the genetic algorithm (GA) for the constellation beguiling. And the double pseudo scheme is implemented for the scramble phase generation. Theoretical analyses show that excellent security performances and high spectral efficiency can be attained. Final simulations are carried out to evaluate the performances of the SPA-WFRFT based system, and demonstrate that the proposed system can effectively degrade the unauthorized receivers' bit error rate (BER) performance while maintaining its own communication quality.

  • Recent Progress in the Development of Large-Capacity Integrated Silicon Photonics Transceivers Open Access

    Yu TANAKA  

     
    INVITED PAPER

      Vol:
    E102-C No:4
      Page(s):
    357-363

    We report our recent progress in silicon photonics integrated device technology targeting on-chip-level large-capacity optical interconnect applications. To realize high-capacity data transmission, we successfully developed on-package-type silicon photonics integrated transceivers and demonstrated simultaneous 400 Gbps operation. 56 Gbps pulse-amplitude-modulation (PAM) 4 and wavelength-division-multiplexing technologies were also introduced to enhance the transmission capacity.

  • Efficient Dynamic Malware Analysis for Collecting HTTP Requests using Deep Learning

    Toshiki SHIBAHARA  Takeshi YAGI  Mitsuaki AKIYAMA  Daiki CHIBA  Kunio HATO  

     
    PAPER

      Pubricized:
    2019/02/01
      Vol:
    E102-D No:4
      Page(s):
    725-736

    Malware-infected hosts have typically been detected using network-based Intrusion Detection Systems on the basis of characteristic patterns of HTTP requests collected with dynamic malware analysis. Since attackers continuously modify malicious HTTP requests to evade detection, novel HTTP requests sent from new malware samples need to be exhaustively collected in order to maintain a high detection rate. However, analyzing all new malware samples for a long period is infeasible in a limited amount of time. Therefore, we propose a system for efficiently collecting HTTP requests with dynamic malware analysis. Specifically, our system analyzes a malware sample for a short period and then determines whether the analysis should be continued or suspended. Our system identifies malware samples whose analyses should be continued on the basis of the network behavior in their short-period analyses. To make an accurate determination, we focus on the fact that malware communications resemble natural language from the viewpoint of data structure. We apply the recursive neural network, which has recently exhibited high classification performance in the field of natural language processing, to our proposed system. In the evaluation with 42,856 malware samples, our proposed system collected 94% of novel HTTP requests and reduced analysis time by 82% in comparison with the system that continues all analyses.

  • Mode Selective Active Multimode Interferometer Laser Diode — Mode Selection Principle, and High Speed Modulation — Open Access

    Kiichi HAMAMOTO  Haisong JIANG  

     
    INVITED PAPER

      Vol:
    E102-C No:4
      Page(s):
    364-370

    We have proposed and demonstrated a mode selective active-MMI (multimode interferometer) laser diode as a mode selective light source so far. This laser diode features; 1) lasing at a selected space mode, and 2) high modulation bandwidth. Based on these, it is expected to enable high speed interconnection into future personal and mobile devices. In this paper, we explain the mode selection, and the high speed modulation principles. Then, we present our recent results concerning high speed frequency response of the fundamental and first order space modes.

  • Quantum Information Processing with Superconducting Nanowire Single-Photon Detectors Open Access

    Takashi YAMAMOTO  

     
    INVITED PAPER

      Vol:
    E102-C No:3
      Page(s):
    224-229

    Superconducting nanowire single-photon detector(SNSPD) has been one of the important ingredients for photonic quantum information processing (QIP). In order to see the potential of SNSPDs, I briefly review recent progresses of the photonic QIP with SNSPDs implemented for various purposes and present a possible direction for the development of SNSPDs.

  • A 6th-Order Quadrature Bandpass Delta Sigma AD Modulator Using Dynamic Amplifier and Noise Coupling SAR Quantizer

    Chunhui PAN  Hao SAN  

     
    PAPER

      Vol:
    E102-A No:3
      Page(s):
    507-517

    This paper presents a 6th-order quadrature bandpass delta sigma AD modulator (QBPDSM) with 2nd-order image rejection using dynamic amplifier and noise coupling (NC) SAR quantizer embedded by passive adder for the application of wireless communication system. A novel complex integrator using dynamic amplifier is proposed to improve the energy efficiency of the QBPDSM. The NC SAR quantizer can realize an additional 2nd-order noise shaping and 2nd-order image rejection by the digital domain noise coupling technique. As a result, the 6th-order QBPDSM with 2nd-order image rejection is realized by two complex integrators using dynamic amplifier and the NC SAR quantizer. The SPICE simulation results demonstrate the feasibility of the proposed QBPDSM in 90nm CMOS technology. Simulated SNDR of 76.30dB is realized while a sinusoid -3.25dBFS input is sampled at 33.3MS/s and the bandwidth of 2.083MHz (OSR=8) is achieved. The total power consumption in the modulator is 6.74mW while the supply voltage is 1.2V.

  • Effect of Joint Detection on System Throughput in Distributed Antenna Network

    Haruya ISHIKAWA  Yukitoshi SANADA  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Pubricized:
    2018/08/29
      Vol:
    E102-B No:3
      Page(s):
    641-647

    This paper evaluates the throughput of a distributed antenna network (DAN) with multiple mobile terminal scheduling and the usage of joint maximum-likelihood detection (MLD). Mobile terminals are closer to the desired antennas in the DAN which leads to higher throughput and better frequency utilization efficiency. However, when multiple mobile terminal scheduling is applied to the DAN, interference can occur between transmitted signals from antennas. Therefore, in this research, mobile terminal scheduling along with joint MLD is applied to reduce the effects of interference. A system level simulation shows that the usage of joint MLD in a densely packed DAN provides better system throughput regardless of the numbers of mobile terminals and fading channels.

  • Unsupervised Deep Domain Adaptation for Heterogeneous Defect Prediction

    Lina GONG  Shujuan JIANG  Qiao YU  Li JIANG  

     
    PAPER-Software Engineering

      Pubricized:
    2018/12/05
      Vol:
    E102-D No:3
      Page(s):
    537-549

    Heterogeneous defect prediction (HDP) is to detect the largest number of defective software modules in one project by using historical data collected from other projects with different metrics. However, these data can not be directly used because of different metrics set among projects. Meanwhile, software data have more non-defective instances than defective instances which may cause a significant bias towards defective instances. To completely solve these two restrictions, we propose unsupervised deep domain adaptation approach to build a HDP model. Specifically, we firstly map the data of source and target projects into a unified metric representation (UMR). Then, we design a simple neural network (SNN) model to deal with the heterogeneous and class-imbalanced problems in software defect prediction (SDP). In particular, our model introduces the Maximum Mean Discrepancy (MMD) as the distance between the source and target data to reduce the distribution mismatch, and use the cross-entropy loss function as the classification loss. Extensive experiments on 18 public projects from four datasets indicate that the proposed approach can build an effective prediction model for heterogeneous defect prediction (HDP) and outperforms the related competing approaches.

  • Multi-View Synthesis and Analysis Dictionaries Learning for Classification

    Fei WU  Xiwei DONG  Lu HAN  Xiao-Yuan JING  Yi-mu JI  

     
    LETTER-Pattern Recognition

      Pubricized:
    2018/11/27
      Vol:
    E102-D No:3
      Page(s):
    659-662

    Recently, multi-view dictionary learning technique has attracted lots of research interest. Although several multi-view dictionary learning methods have been addressed, they can be further improved. Most of existing multi-view dictionary learning methods adopt the l0 or l1-norm sparsity constraint on the representation coefficients, which makes the training and testing phases time-consuming. In this paper, we propose a novel multi-view dictionary learning approach named multi-view synthesis and analysis dictionaries learning (MSADL), which jointly learns multiple discriminant dictionary pairs with each corresponding to one view and containing a structured synthesis dictionary and a structured analysis dictionary. MSADL utilizes synthesis dictionaries to achieve class-specific reconstruction and uses analysis dictionaries to generate discriminative code coefficients by linear projection. Furthermore, we design an uncorrelation term for multi-view dictionary learning, such that the redundancy among synthesis dictionaries learned from different views can be reduced. Two widely used datasets are employed as test data. Experimental results demonstrate the efficiency and effectiveness of the proposed approach.

  • BER Performance of Human Body Communications Using FSDT

    Kunho PARK  Min Joo JEONG  Jong Jin BAEK  Se Woong KIM  Youn Tae KIM  

     
    PAPER-Network

      Pubricized:
    2018/08/23
      Vol:
    E102-B No:3
      Page(s):
    522-527

    This paper presents the bit error rate (BER) performance of human body communication (HBC) receivers in interference-rich environments. The BER performance was measured while applying an interference signal to the HBC receiver to consider the effect of receiver performance on BER performance. During the measurement, a signal attenuator was used to mimic the signal loss of the human body channel, which improved the repeatability of the measurement results. The measurement results showed that HBC is robust against the interference when frequency selective digital transmission (FSDT) is used as a modulation scheme. The BER performance in this paper can be effectively used to evaluate a communication performance of HBC.

981-1000hit(8214hit)