The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] CTI(8214hit)

1181-1200hit(8214hit)

  • Toward In-Network Deep Machine Learning for Identifying Mobile Applications and Enabling Application Specific Network Slicing Open Access

    Akihiro NAKAO  Ping DU  

     
    INVITED PAPER

      Pubricized:
    2018/01/22
      Vol:
    E101-B No:7
      Page(s):
    1536-1543

    In this paper, we posit that, in future mobile network, network softwarization will be prevalent, and it becomes important to utilize deep machine learning within network to classify mobile traffic into fine grained slices, by identifying application types and devices so that we can apply Quality-of-Service (QoS) control, mobile edge/multi-access computing, and various network function per application and per device. This paper reports our initial attempt to apply deep machine learning for identifying application types from actual mobile network traffic captured from an MVNO, mobile virtual network operator and to design the system for classifying it to application specific slices.

  • An Improved Algorithm of RPL Based on Triangle Module Operator for AMI Networks

    Yanan CAO  Muqing WU  

     
    PAPER

      Pubricized:
    2018/01/22
      Vol:
    E101-B No:7
      Page(s):
    1602-1611

    Advanced metering infrastructure (AMI) is a kind of wireless sensor network that provides two-way communication between smart meters and city utilities in the neighborhood area of the smart grid. And the routing protocol for low-power and lossy network (RPL) is being considered for use in AMI networks. However, there still exist several problems that need to be solved, especially with respect to QoS guarantees. To address these problems, an improved algorithm of RPL based on triangle module operator named as TMO is proposed. TMO comprehensively evaluates routing metrics: end-to-end delay, number of hops, expected transmission count, node remaining energy, and child node count. Moreover, TMO uses triangle module operator to fuse membership functions of these routing metrics. Then, the node with minimum rank value will be selected as preferred parent (the next hop). Consequently, the QoS of RPL-based AMI networks can be guaranteed effectively. Simulation results show that TMO offers a great improvement over several the most popular schemes for RPL like ETXOF, OF-FL and additive composition metric manners in terms of network lifetime, average end-to-end delay, average packet loss ratio, average hop count from nodes to root, etc.

  • Si-Photonics-Based Layer-to-Layer Coupler Toward 3D Optical Interconnection Open Access

    Nobuhiko NISHIYAMA  JoonHyun KANG  Yuki KUNO  Kazuto ITOH  Yuki ATSUMI  Tomohiro AMEMIYA  Shigehisa ARAI  

     
    INVITED PAPER

      Vol:
    E101-C No:7
      Page(s):
    501-508

    To realize three-dimensional (3D) optical interconnection on large-scale integration (LSI) circuits, layer-to-layer couplers based on Si-photonics platform were reviewed. In terms of optical cross talk, more than 1 µm layer distance is required for 3D interconnection. To meet this requirement for the layer-to-layer optical coupler, we proposed two types of couplers: a pair of grating couplers with metal mirrors for multi-layer distance coupling and taper-type directional couplers for neighboring layer distance coupling. Both structures produced a high coupling efficiency with relatively compact (∼100 µm) device sizes with a complementary metal oxide semiconductor (CMOS) compatible fabrication process.

  • MAP-MRF Estimation Based Weather Radar Visualization

    Suk-Hwan LEE  

     
    PAPER-Image Processing and Video Processing

      Pubricized:
    2018/04/10
      Vol:
    E101-D No:7
      Page(s):
    1924-1932

    Real-time weather radar imaging technology is required for generating short-time weather forecasts. Moreover, such technology plays an important role in critical-weather warning systems that are based on vast Doppler weather radar data. In this study, we propose a weather radar imaging method that uses multi-layer contour detection and segmentation based on MAP-MRF estimation. The proposed method consists of three major steps. The first step involves generating reflectivity and velocity data using the Doppler radar in the form of raw data images of sweep unit in the polar coordinate system. Then, contour lines are detected on multi-layers using the adaptive median filter and modified Canny's detector based on curvature consistency. The second step interpolates contours on the Cartesian coordinate system using 3D scattered data interpolation and then segments the contours based on MAP-MRF prediction and the metropolis algorithm for each layer. The final step involves integrating the segmented contour layers and generating PPI images in sweep units. Experimental results show that the proposed method produces a visually improved PPI image in 45% of the time as compared to that for conventional methods.

  • Advanced Photonic Crystal Nanocavity Quantum Dot Lasers Open Access

    Yasutomo OTA  Katsuyuki WATANABE  Masahiro KAKUDA  Satoshi IWAMOTO  Yasuhiko ARAKAWA  

     
    INVITED PAPER

      Vol:
    E101-C No:7
      Page(s):
    553-560

    We discuss our recent progress in photonic crystal nanocavity quantum dot lasers. We show how enhanced light matter interactions in the nanocavity lead to diverse and fascinating lasing phenomena that are in general inaccessible by conventional bulky semiconductor lasers. First, we demonstrate thresholdless lasing, in which any clear kink in the output laser curve does not appear. This is a result of near unity coupling of spontaneous emission into the lasing cavity mode, enabled by the strong Purcell effect supported in the nanocavity. Then, we discuss self-frequency conversion nanolasers, in which both near infrared lasing oscillation and nonlinear optical frequency conversion to visible light are simultaneously supported in the individual nanocavity. Owing to the tight optical confinement both in time and space, a high normalized conversion efficiency over a few hundred %/W is demonstrated. We also show that the intracavity nonlinear frequency conversion can be utilized to measure the statistics of the intracavity photons. These novel phenomena will be useful for developing various nano-optoelectronic devices with advanced functionalities.

  • Dynamic Group-Based Antenna Selection for Uplink Multi-User MIMO in Distributed Antenna System

    Sho YOSHIDA  Kentaro NISHIMORI  Soichi ITO  Tomoki MURAKAMI  Koichi ISHIHARA  Yasushi TAKATORI  

     
    PAPER

      Pubricized:
    2018/01/22
      Vol:
    E101-B No:7
      Page(s):
    1552-1560

    This paper proposes a hardware configuration for uplink multi-user multiple-input multiple-output (MU-MIMO) transmissions in a distributed antenna system (DAS). The demand for high-speed transmission in the uplink has increased recently, because of which standardizations in LTE-advanced and IEEE 802.11ax networks is currently underway. User terminal (UT) scheduling on the downlink MU-MIMO transmission is easy even in unlicensed band such as those in wireless local area network (WLAN) systems. However, the detailed management of the UTs is difficult on the uplink MU-MIMO transmissions because of the decentralized wireless access control. The proposed configuration allows an antenna to be selected from an external device on the access point (AP). All AP antennas are divided into groups, and the received signal in each group is input to the amplitude detector via a directional coupler. Subsequently, the selected antenna is fed by a multiple-to-one switch instead of a matrix switch. To clarify the effectiveness of the proposed configuration, we conduct computer simulations based on the ray-tracing method for propagation channels in an indoor environment.

  • A Relaxed Bit-Write-Reducing and Error-Correcting Code for Non-Volatile Memories

    Tatsuro KOJO  Masashi TAWADA  Masao YANAGISAWA  Nozomu TOGAWA  

     
    LETTER

      Vol:
    E101-A No:7
      Page(s):
    1045-1052

    Non-volatile memories are a promising alternative to memory design but data stored in them still may be destructed due to crosstalk and radiation. The data stored in them can be restored by using error-correcting codes but they require extra bits to correct bit errors. One of the largest problems in non-volatile memories is that they consume ten to hundred times more energy than normal memories in bit-writing. It is quite necessary to reduce writing bits. Recently, a REC code (bit-write-reducing and error-correcting code) is proposed for non-volatile memories which can reduce writing bits and has a capability of error correction. The REC code is generated from a linear systematic error-correcting code but it must include the codeword of all 1's, i.e., 11…1. The codeword bit length must be longer in order to satisfy this condition. In this letter, we propose a method to generate a relaxed REC code which is generated from a relaxed error-correcting code, which does not necessarily include the codeword of all 1's and thus its codeword bit length can be shorter. We prove that the maximum flipping bits of the relaxed REC code is still limited theoretically. Experimental results show that the relaxed REC code efficiently reduce the number of writing bits.

  • HOAH: A Hybrid TCP Throughput Prediction with Autoregressive Model and Hidden Markov Model for Mobile Networks

    Bo WEI  Kenji KANAI  Wataru KAWAKAMI  Jiro KATTO  

     
    PAPER

      Pubricized:
    2018/01/22
      Vol:
    E101-B No:7
      Page(s):
    1612-1624

    Throughput prediction is one of the promising techniques to improve the quality of service (QoS) and quality of experience (QoE) of mobile applications. To address the problem of predicting future throughput distribution accurately during the whole session, which can exhibit large throughput fluctuations in different scenarios (especially scenarios of moving user), we propose a history-based throughput prediction method that utilizes time series analysis and machine learning techniques for mobile network communication. This method is called the Hybrid Prediction with the Autoregressive Model and Hidden Markov Model (HOAH). Different from existing methods, HOAH uses Support Vector Machine (SVM) to classify the throughput transition into two classes, and predicts the transmission control protocol (TCP) throughput by switching between the Autoregressive Model (AR Model) and the Gaussian Mixture Model-Hidden Markov Model (GMM-HMM). We conduct field experiments to evaluate the proposed method in seven different scenarios. The results show that HOAH can predict future throughput effectively and decreases the prediction error by a maximum of 55.95% compared with other methods.

  • A 1024-QAM Capable WLAN Receiver with -56.3dB Image Rejection Ratio Using Self-Calibration Technique

    Shusuke KAWAI  Toshiyuki YAMAGISHI  Yosuke HAGIWARA  Shigehito SAIGUSA  Ichiro SETO  Shoji OTAKA  Shuichi ITO  

     
    PAPER

      Vol:
    E101-C No:7
      Page(s):
    457-463

    This paper presents a 1024-QAM OFDM signal capable WLAN receiver in 65nm CMOS technology. Thermal noise-based IQ frequency-independent mismatch correction and IQ frequency-dependent mismatch correction with baseband loopback are proposed for the self-calibration in the receiver. The measured image rejection ratio of the self-calibration is -56.3dB. The receiver achieves the extremely low EVM of -37.1dB even with wide channel bandwidth of 80MHz and has the ability to receive the 1024-QAM signal. The result indicates that the receiver is extendable for the 802.11ax compliant receiver that supports a higher density modulation scheme of MIMO.

  • Robust Human-Computer Interaction for Unstable Camera Systems

    Hao ZHU  Qing YOU  Wenjie CHEN  

     
    PAPER-Image Processing and Video Processing

      Pubricized:
    2018/03/26
      Vol:
    E101-D No:7
      Page(s):
    1915-1923

    A lot of vision systems have been embedded in devices around us, like mobile phones, vehicles and UAVs. Many of them still need interactive operations of human users. However, specifying accurate object information could be a challenging task due to video jitters caused by camera shakes and target motions. In this paper, we first collect practical hand drawn bounding boxes on real-life videos which are captured by hand-held cameras and UAV-based cameras. We give a deep look into human-computer interactive operations on unstable images. The collected data shows that human input suffers heavy deviations which are harmful to interaction accuracy. To achieve robust interactions on unstable platforms, we propose a target-focused video stabilization method which utilizes a proposal-based object detector and a tracking-based motion estimation component. This method starts with a single manual click and outputs stabilized video stream in which the specified target stays almost stationary. Our method removes not only camera jitters but also target motions simultaneously, therefore offering an comfortable environment for users to do further interactive operations. The experiments demonstrate that the proposed method effectively eliminates image vibrations and significantly increases human input accuracy.

  • Two High Accuracy Frequency Estimation Algorithms Based on New Autocorrelation-Like Function for Noncircular/Sinusoid Signal

    Kai WANG  Jiaying DING  Yili XIA  Xu LIU  Jinguang HAO  Wenjiang PEI  

     
    PAPER-Digital Signal Processing

      Vol:
    E101-A No:7
      Page(s):
    1065-1073

    Computing autocorrelation coefficient can effectively reduce the influence of additive white noise, thus estimation precision will be improved. In this paper, an autocorrelation-like function, different from the ordinary one, is defined, and is proven to own better linear predictive performance. Two algorithms for signal model are developed to achieve frequency estimates. We analyze the theoretical properties of the algorithms in the additive white Gaussian noise. The simulation results match with the theoretical values well in the sense of mean square error. The proposed algorithms compare with existing estimators, are closer to the Cramer-Rao bound (CRLB). In addition, computer simulations demonstrate that the proposed algorithms provide high accuracy and good anti-noise capability.

  • Cyclic Vertex Connectivity of Trivalent Cayley Graphs

    Jenn-Yang KE  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2018/03/30
      Vol:
    E101-D No:7
      Page(s):
    1828-1834

    A vertex subset F ⊆ V(G) is called a cyclic vertex-cut set of a connected graph G if G-F is disconnected such that at least two components in G-F contain cycles. The cyclic vertex connectivity is the cardinality of a minimum cyclic vertex-cut set. In this paper, we show that the cyclic vertex connectivity of the trivalent Cayley graphs TGn is equal to eight for n ≥ 4.

  • MRO-PUF: Physically Unclonable Function with Enhanced Resistance against Machine Learning Attacks Utilizing Instantaneous Output of Ring Oscillator

    Masayuki HIROMOTO  Motoki YOSHINAGA  Takashi SATO  

     
    PAPER

      Vol:
    E101-A No:7
      Page(s):
    1035-1044

    This paper proposes MRO-PUF, a new architecture for ring-oscillator-based physically unclonable functions (PUFs) with enhanced resistance against machine learning attacks. In the proposed PUF, an instantaneous output value of a ring oscillator is used as a response, whereas the most existing PUFs directly use propagation delays to determine the response. Since the response of the MRO-PUF is non-linear and discontinuous as the delay of the ring oscillator increases, the prediction of the response by machine learning attacks is difficult. Through the performance evaluation of the MRO-PUF with simulations, it achieves 15 times stronger resistance against machine learning attacks using a support vector machine compared to the existing ones such as an arbiter PUF and a bistable ring PUF. The MRO-PUF also achieves a sufficient level of the basic performance of PUFs in terms of uniqueness and robustness.

  • Error Correction for Search Engine by Mining Bad Case

    Jianyong DUAN  Tianxiao JI  Hao WANG  

     
    PAPER-Natural Language Processing

      Pubricized:
    2018/03/26
      Vol:
    E101-D No:7
      Page(s):
    1938-1945

    Automatic error correction of users' search terms for search engines is an important aspect of improving search engine retrieval efficiency, accuracy and user experience. In the era of big data, we can analyze and mine massive search engine logs to release the hidden mind with big data ideas. It can obtain better results through statistical modeling of query errors in search engine log data. But when we cannot find the error query in the log, we can't make good use of the information in the log to correct the query result. These undiscovered error queries are called Bad Case. This paper combines the error correction algorithm model and search engine query log mining analysis. First, we explored Bad Cases in the query error correction process through the search engine query logs. Then we quantified the characteristics of these Bad Cases and built a model to allow search engines to automatically mine Bad Cases with these features. Finally, we applied Bad Cases to the N-gram error correction algorithm model to check the impact of Bad Case mining on error correction. The experimental results show that the error correction based on Bad Case mining makes the precision rate and recall rate of the automatic error correction improved obviously. Users experience is improved and the interaction becomes more friendly.

  • Effect of User Antenna Selection on Block Beamforming Algorithms for Suppressing Inter-User Interference in Multiuser MIMO System Open Access

    Nobuyoshi KIKUMA  Kentaro NISHIMORI  Takefumi HIRAGURI  

     
    INVITED PAPER

      Pubricized:
    2018/01/22
      Vol:
    E101-B No:7
      Page(s):
    1523-1535

    Multiuser MIMO (MU-MIMO) improves the system channel capacity by generating a large virtual MIMO channel between a base station and multiple user terminals (UTs) with effective utilization of wireless resources. Block beamforming algorithms such as Block Diagonalization (BD) and Block Maximum Signal-to-Noise ratio (BMSN) have been proposed in order to realize MU-MIMO broadcast transmission. The BD algorithm cancels inter-user interference (IUI) by creating the weights so that the channel matrices for the other users are set to be zero matrices. The BMSN algorithm has a function of maintaining a high gain response for each desired user in addition to IUI cancellation. Therefore, the BMSN algorithm generally outperforms the BD algorithm. However, when the number of transmit antennas is equal to the total number of receive antennas, the transmission rate by both BD and BMSN algorithms is decreased. This is because the eigenvalues of channel matrices are too small to support data transmission. To resolve the issue, this paper focuses on an antenna selection (AS) method at the UTs. The AS method reduces the number of pattern nulls for the other users except an intended user in the BD and BMSN algorithms. It is verified via bit error rate (BER) evaluation that the AS method is effective in the BD and BMSN algorithms, especially, when the number of user antennas with a low bit rate (i.e., low signal-to-noise power ratio) is increased. Moreover, this paper evaluates the achievable bit rate and throughput including an actual channel state information feedback based on IEEE802.11ac standard. Although the number of equivalent receive antenna is reduced to only one by the AS method when the number of antennas at the UT is two, it is shown that the throughputs by BD and BMSN with the AS method (BD-AS and BMSN-AS) are higher than those by the conventional BD and BMSN algorithms.

  • Physical-Layer Network Coding for Fading Bidirectional Relay Channels with M-CPFSK

    Nan SHA  Yuanyuan GAO  Mingxi GUO  Shijie WANG  Kui XU  

     
    LETTER-Communication Theory and Signals

      Vol:
    E101-A No:6
      Page(s):
    974-977

    We consider a physical-layer network coding (PNC) scheme based on M-ary continuous phase frequency shift keying (M-CPFSK) modulation for a bidirectional relay network. In this scheme, the maximum-likelihood sequence detection (MLSD) algorithm for the relay receiver over Rayleigh fading channels is discussed. Moreover, an upper bound on the minimum Euclidean distance for the superimposed signals is analyzed and the corresponding lower bound for the average symbol error rate (SER) at the relay is derived. Numerical results are also sustained by simulations which corroborate the exactness of the theoretical analysis.

  • Two-Input Functional Encryption for Inner Products from Bilinear Maps

    Kwangsu LEE  Dong Hoon LEE  

     
    PAPER-Cryptography and Information Security

      Vol:
    E101-A No:6
      Page(s):
    915-928

    Functional encryption is a new paradigm of public-key encryption that allows a user to compute f(x) on encrypted data CT(x) with a private key SKf to finely control the revealed information. Multi-input functional encryption is an important extension of (single-input) functional encryption that allows the computation f(x1,...,xn) on multiple ciphertexts CT(x1),...,CT(xn) with a private key SKf. Although multi-input functional encryption has many interesting applications like running SQL queries on encrypted database and computation on encrypted stream, current candidates are not yet practical since many of them are built on indistinguishability obfuscation. To solve this unsatisfactory situation, we show that practical two-input functional encryption schemes for inner products can be built based on bilinear maps. In this paper, we first propose a two-input functional encryption scheme for inner products in composite-order bilinear groups and prove its selective IND-security under simple assumptions. Next, we propose a two-client functional encryption scheme for inner products where each ciphertext can be associated with a time period and prove its selective IND-security. Furthermore, we show that our two-input functional encryption schemes in composite-order bilinear groups can be converted into schemes in prime-order asymmetric bilinear groups by using the asymmetric property of asymmetric bilinear groups.

  • Stability Analysis Using Monodromy Matrix for Impacting Systems

    Hiroyuki ASAHARA  Takuji KOUSAKA  

     
    PAPER-Nonlinear Problems

      Vol:
    E101-A No:6
      Page(s):
    904-914

    In this research, we propose an effective stability analysis method to impacting systems with periodically moving borders (periodic borders). First, we describe an n-dimensional impacting system with periodic borders. Subsequently, we present an algorithm based on a stability analysis method using the monodromy matrix for calculating stability of the waveform. This approach requires the state-transition matrix be related to the impact phenomenon, which is known as the saltation matrix. In an earlier study, the expression for the saltation matrix was derived assuming a static border (fixed border). In this research, we derive an expression for the saltation matrix for a periodic border. We confirm the performance of the proposed method, which is also applicable to systems with fixed borders, by applying it to an impacting system with a periodic border. Using this approach, we analyze the bifurcation of an impacting system with a periodic border by computing the evolution of the stable and unstable periodic waveform. We demonstrate a discontinuous change of the periodic points, which occurs when a periodic point collides with a border, in the one-parameter bifurcation diagram.

  • Block-Adaptive Selection of Recursive and Non-Recursive Type Intra Prediction Modes for Image Coding

    Yuta ISHIDA  Yusuke KAMEDA  Tomokazu ISHIKAWA  Ichiro MATSUDA  Susumu ITOH  

     
    LETTER-Image

      Vol:
    E101-A No:6
      Page(s):
    992-996

    This paper proposes a lossy image coding method for still images. In this method, recursive and non-recursive type intra prediction techniques are adaptively selected on a block-by-block basis. The recursive-type intra prediction technique applies a linear predictor to each pel within a prediction block in a recursive manner, and thus typically produces smooth image values. In this paper, the non-recursive type intra prediction technique is extended from the angular prediction technique adopted in the H.265/HEVC video coding standard to enable interpolative prediction to the maximum possible extent. The experimental results indicate that the proposed method achieves better coding performance than the conventional method that only uses the recursive-type prediction technique.

  • Hybrid Mechanism to Detect Paroxysmal Stage of Atrial Fibrillation Using Adaptive Threshold-Based Algorithm with Artificial Neural Network

    Mohamad Sabri bin SINAL  Eiji KAMIOKA  

     
    PAPER-Biological Engineering

      Pubricized:
    2018/03/14
      Vol:
    E101-D No:6
      Page(s):
    1666-1676

    Automatic detection of heart cycle abnormalities in a long duration of ECG data is a crucial technique for diagnosing an early stage of heart diseases. Concretely, Paroxysmal stage of Atrial Fibrillation rhythms (ParAF) must be discriminated from Normal Sinus rhythms (NS). The both of waveforms in ECG data are very similar, and thus it is difficult to completely detect the Paroxysmal stage of Atrial Fibrillation rhythms. Previous studies have tried to solve this issue and some of them achieved the discrimination with a high degree of accuracy. However, the accuracies of them do not reach 100%. In addition, no research has achieved it in a long duration, e.g. 12 hours, of ECG data. In this study, a new mechanism to tackle with these issues is proposed: “Door-to-Door” algorithm is introduced to accurately and quickly detect significant peaks of heart cycle in 12 hours of ECG data and to discriminate obvious ParAF rhythms from NS rhythms. In addition, a quantitative method using Artificial Neural Network (ANN), which discriminates unobvious ParAF rhythms from NS rhythms, is investigated. As the result of Door-to-Door algorithm performance evaluation, it was revealed that Door-to-Door algorithm achieves the accuracy of 100% in detecting the significant peaks of heart cycle in 17 NS ECG data. In addition, it was verified that ANN-based method achieves the accuracy of 100% in discriminating the Paroxysmal stage of 15 Atrial Fibrillation data from 17 NS data. Furthermore, it was confirmed that the computational time to perform the proposed mechanism is less than the half of the previous study. From these achievements, it is concluded that the proposed mechanism can practically be used to diagnose early stage of heart diseases.

1181-1200hit(8214hit)