The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] CTI(8214hit)

1041-1060hit(8214hit)

  • New Distinguisher on Reduced-Round Keccak Sponge Function

    Senyang HUANG  Xiaoyun WANG  Guangwu XU  Meiqin WANG  Jingyuan ZHAO  

     
    PAPER-Cryptography and Information Security

      Vol:
    E102-A No:1
      Page(s):
    242-250

    The security analysis of Keccak, the winner of SHA-3, has attracted considerable interest. Recently, some attention has been paid to distinguishing Keccak sponge function from random permutation. In EUROCRYPT'17, Huang et al. proposed conditional cube tester to recover the key of Keccak-MAC and Keyak and to construct practical distinguishing attacks on Keccak sponge function up to 7 rounds. In this paper, we improve the conditional cube tester model by refining the formulation of cube variables. By classifying cube variables into three different types and working the candidates of these types of cube variable carefully, we are able to establish a new theoretical distinguisher on 8-round Keccak sponge function. Our result is more efficient and greatly improves the existing results. Finally we remark that our distinguishing attack on the the reduced-round Keccak will not threat the security margin of the Keccak sponge function.

  • Radio Propagation Prediction Method Using Point Cloud Data Based on Hybrid of Ray-Tracing and Effective Roughness Model in Urban Environments

    Minoru INOMATA  Tetsuro IMAI  Koshiro KITAO  Yukihiko OKUMURA  Motoharu SASAKI  Yasushi TAKATORI  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2018/07/10
      Vol:
    E102-B No:1
      Page(s):
    51-62

    This paper proposes a radio propagation prediction method that uses point cloud data based on a hybrid of the ray-tracing (RT) method and an effective roughness (ER) model in urban environments for the fifth generation mobile communications system using high frequency bands. The proposed prediction method incorporates propagation characteristics that consider diffuse scattering from surface irregularities. The validity of the proposed method is confirmed by comparisons of measurement and prediction results gained from the proposed method and a conventional RT method based on power delay and angular profiles. From predictions based on the power delay and angular profiles, we find that the proposed method, assuming the roughness of σh=1mm, accurately predicts the propagation characteristics in the 20GHz band for urban line-of-sight environments. The prediction error for the delay spread is 2.1ns to 9.7ns in an urban environment.

  • Kirchhoff Approximation Analysis of Plane Wave Scattering by Conducting Thick Slits Open Access

    Khanh Nam NGUYEN  Hiroshi SHIRAI  

     
    PAPER

      Vol:
    E102-C No:1
      Page(s):
    12-20

    Kirchhoff approximation (KA) method has been applied for ray-mode conversion to analyze the plane wave scattering by conducting thick slits. The scattering fields can be considered as field radiations from equivalent magnetic current sources assumed by closing the aperture of the slit. The obtained results are compared with those of other methods to validate the accuracy of the proposed formulation in different conditions of slit dimension.

  • Selecting Orientation-Insensitive Features for Activity Recognition from Accelerometers

    Yasser MOHAMMAD  Kazunori MATSUMOTO  Keiichiro HOASHI  

     
    PAPER-Information Network

      Pubricized:
    2018/10/05
      Vol:
    E102-D No:1
      Page(s):
    104-115

    Activity recognition from sensors is a classification problem over time-series data. Some research in the area utilize time and frequency domain handcrafted features that differ between datasets. Another categorically different approach is to use deep learning methods for feature learning. This paper explores a middle ground in which an off-the-shelf feature extractor is used to generate a large number of candidate time-domain features followed by a feature selector that was designed to reduce the bias toward specific classification techniques. Moreover, this paper advocates the use of features that are mostly insensitive to sensor orientation and show their applicability to the activity recognition problem. The proposed approach is evaluated using six different publicly available datasets collected under various conditions using different experimental protocols and shows comparable or higher accuracy than state-of-the-art methods on most datasets but usually using an order of magnitude fewer features.

  • A Fundamental Study on Vehicle Detection in Flooded Urban Area Using Quad-Polarimetric SAR Data

    Takanori ISHIKURO  Ryoichi SATO  Yoshio YAMAGUCHI  Hiroyoshi YAMADA  

     
    PAPER

      Vol:
    E102-C No:1
      Page(s):
    38-45

    In this paper, we propose a simple algorithm for detecting a vehicle trapped in flooded urban area by using quad-polarimetric SAR data. The four-component scattering power decomposition and phase difference of HH-VV co-pol ratio are effectively used in the proposed algorithm. Here we carry out polarimetric scattering measurement for a scaled vehicle model surrounded by two buildings model in an anechoic chamber, to acquire the quad-polarimetric SAR data. It is confirmed from the results of the image analysis for the measured SAR data that the proposed algorithm for vehicle detection works well even under severe environment where the vehicle is set in the shadow of the building and/or the alignment of the vehicle or the buildings is obliquely oriented to direction of the radar line of sight.

  • A Survey of Social Network Analysis Techniques and their Applications to Socially Aware Networking Open Access

    Sho TSUGAWA  

     
    INVITED SURVEY PAPER-Network

      Pubricized:
    2018/02/21
      Vol:
    E102-B No:1
      Page(s):
    17-39

    Socially aware networking is an emerging research field that aims to improve the current networking technologies and realize novel network services by applying social network analysis (SNA) techniques. Conducting socially aware networking studies requires knowledge of both SNA and communication networking, but it is not easy for communication networking researchers who are unfamiliar with SNA to obtain comprehensive knowledge of SNA due to its interdisciplinary nature. This paper therefore aims to fill the knowledge gap for networking researchers who are interested in socially aware networking but are not familiar with SNA. This paper surveys three types of important SNA techniques for socially aware networking: identification of influential nodes, link prediction, and community detection. Then, this paper introduces how SNA techniques are used in socially aware networking and discusses research trends in socially aware networking.

  • Online Antenna-Pulse Selection for STAP by Exploiting Structured Covariance Matrix

    Fengde JIA  Zishu HE  Yikai WANG  Ruiyang LI  

     
    LETTER-Digital Signal Processing

      Vol:
    E102-A No:1
      Page(s):
    296-299

    In this paper, we propose an online antenna-pulse selection method in space time adaptive processing, while maintaining considerable performance and low computational complexity. The proposed method considers the antenna-pulse selection and covariance matrix estimation at the same time by exploiting the structured clutter covariance matrix. Such prior knowledge can enhance the covariance matrix estimation accuracy and thus can provide a better objective function for antenna-pulse selection. Simulations also validate the effectiveness of the proposed method.

  • The PRF Security of Compression-Function-Based MAC Functions in the Multi-User Setting Open Access

    Shoichi HIROSE  

     
    PAPER-Cryptography and Information Security

      Vol:
    E102-A No:1
      Page(s):
    270-277

    A compression-function-based MAC function called FMAC was presented as well as a vector-input PRF called vFMAC in 2016. They were proven to be secure PRFs on the assumption that their compression function is a secure PRF against related-key attacks with respect to their non-cryptographic permutations in the single user setting. In this paper, it is shown that both FMAC and vFMAC are also secure PRFs in the multi-user setting on the same assumption as in the single user setting. These results imply that their security in the multi-user setting does not degrade with the number of the users and is as good as in the single user setting.

  • Asymptotic Stabilization of Nonholonomic Four-Wheeled Vehicle with Steering Limitation

    Wataru HASHIMOTO  Yuh YAMASHITA  Koichi KOBAYASHI  

     
    PAPER-Systems and Control

      Vol:
    E102-A No:1
      Page(s):
    227-234

    In this paper, we propose a new asymptotically stabilizing control law for a four-wheeled vehicle with a steering limitation. We adopt a locally semiconcave control Lyapunov function (LS-CLF) for the system. To overcome the nonconvexity of the input-constraint set, we utilize a saturation function and a signum function in the control law. The signum function makes the vehicle velocity nonzero except at the origin so that the angular velocity can be manipulated within the input constraint. However, the signum function may cause a chattering phenomenon at certain points of the state far from the origin. Thus, we integrate a lazy-switching mechanism for the vehicle velocity into the control law. The mechanism makes a sign of the vehicle velocity maintain, and the new control input also decreases the value of the LS-CLF. We confirm the effectiveness of our method by a computer simulation and experiments.

  • Some Improved Constructions for Nonbinary Quantum BCH Codes

    Nianqi TANG  Zhuo LI  Lijuan XING  Ming ZHANG  Feifei ZHAO  

     
    LETTER-Information Theory

      Vol:
    E102-A No:1
      Page(s):
    303-306

    Maximal designed distances for nonbinary narrow-sense quantum Bose-Chaudhuri-Hocquenghem (BCH) codes of length $n= rac{q^4-1}{r}$ and new constructions for them are given, where q is an odd prime power. These constructions are capable of designing quantum BCH codes with new parameters. Furthermore, some codes obtained here have better parameters than those constructed by other known constructions.

  • Method for Detecting User Positions with Unmanned Aerial Vehicles Based on Doppler Shifts

    Hiroyasu ISHIKAWA  Hiroki ONUKI  Hideyuki SHINONAGA  

     
    PAPER

      Vol:
    E102-A No:1
      Page(s):
    195-204

    Unmanned aircraft systems (UASs) have been developed and studied as temporal communication systems for emergency and rescue services during disasters, such as earthquakes and serious accidents. In a typical UAS model, several unmanned aerial vehicles (UAVs) are used to provide services over a large area. The UAV is comprised of a transmitter and receiver to transmit/receive the signals to/from terrestrial stations and terminals. Therefore, the carrier frequencies of the transmitted and received signals experience Doppler shifts due to the variations in the line-of-sight velocity between the UAV and the terrestrial terminal. Thus, by observing multiple Doppler shifts from different UAVs, it is possible to detect the position of a user that possesses a communication terminal for the UAS. This study aims to present a methodology for position detection based on the least-squares method to the Doppler shift frequencies. Further, a positioning accuracy index is newly proposed, which can be used as an index for measuring the position accurately, instead of the dilution-of-precision (DOP) method, which is used for global positioning systems (GPSs). A computer simulation was conducted for two different flight route models to confirm the applicability of the proposed positioning method and the positioning accuracy index. The simulation results confirm that the parameters, such as the flight route, the initial position, and velocity of the UAVs, can be optimized by using the proposed positioning accuracy index.

  • An ASIC Crypto Processor for 254-Bit Prime-Field Pairing Featuring Programmable Arithmetic Core Optimized for Quadratic Extension Field

    Hiromitsu AWANO  Tadayuki ICHIHASHI  Makoto IKEDA  

     
    PAPER

      Vol:
    E102-A No:1
      Page(s):
    56-64

    An ASIC crypto processor optimized for the 254-bit prime-field optimal-ate pairing over Barreto-Naehrig (BN) curve is proposed. The data path of the proposed crypto processor is designed to compute five Fp2 operations, a multiplication, three addition/subtractions, and an inversion, simultaneously. We further propose a design methodology to automate the instruction scheduling by using a combinatorial optimization solver, with which the total cycle count is reduced to 1/2 compared with ever reported. The proposed crypto processor is designed and fabricated by using a 65nm silicon-on-thin-box (SOTB) CMOS process. The chip measurement result shows that the fabricated chip successfully computes a pairing in 0.185ms when a typical operating voltage of 1.20V is applied, which corresponds to 2.8× speed up compared to the current state-of-the-art pairing implementation on ASIC platform.

  • A 65 nm 19.1-to-20.4 GHz Sigma-Delta Fractional-N Frequency Synthesizer with Two-Point Modulation for FMCW Radar Applications

    Yuanyuan XU  Wei LI  Wei WANG  Dan WU  Lai HE  Jintao HU  

     
    PAPER-Electronic Circuits

      Vol:
    E102-C No:1
      Page(s):
    64-76

    A 19.1-to-20.4 GHz sigma-delta fractional-N frequency synthesizer with two-point modulation (TPM) for frequency modulated continuous wave (FMCW) radar applications is presented. The FMCW synthesizer proposes a digital and voltage controlled oscillator (D/VCO) with large continuous frequency tuning range and small digital controlled oscillator (DCO) gain variation to support TPM. By using TPM technique, it avoids the correlation between loop bandwidth and chirp slope, which is beneficial to fast chirp, phase noise and linearity. The start frequency, bandwidth and slope of the FMCW signal are all reconfigurable independently. The FMCW synthesizer achieves a measured phase noise of -93.32 dBc/Hz at 1MHz offset from a 19.25 GHz carrier and less than 10 µs locking time. The root-mean-square (RMS) frequency error is only 112 kHz with 94 kHz/µs chirp slope, and 761 kHz with a fast slope of 9.725 MHz/µs respectively. Implemented in 65 nm CMOS process, the synthesizer consumes 74.3 mW with output buffer.

  • Scattering of Electromagnetic Waves by Inhomogeneous Dielectric Gratings Loaded with Conducting Strips — Matrix Formulation of Point Matching Method — Open Access

    Tsuneki YAMASAKI  

     
    PAPER

      Vol:
    E102-C No:1
      Page(s):
    3-11

    We have proposed a new method for the scattering of electromagnetic waves by inhomogeneous dielectric gratings loaded with parallel perfectly conducting strips using the combination of improved Fourier series expansion method and point matching method. Numerical results aregiven for the transmission and scattering characteristics for TE and TM cases.

  • Improvement of Anomaly Detection Performance Using Packet Flow Regularity in Industrial Control Networks Open Access

    Kensuke TAMURA  Kanta MATSUURA  

     
    PAPER

      Vol:
    E102-A No:1
      Page(s):
    65-73

    Since cyber attacks such as cyberterrorism against Industrial Control Systems (ICSs) and cyber espionage against companies managing them have increased, the techniques to detect anomalies in early stages are required. To achieve the purpose, several studies have developed anomaly detection methods for ICSs. In particular, some techniques using packet flow regularity in industrial control networks have achieved high-accuracy detection of attacks disrupting the regularity, i.e. normal behaviour, of ICSs. However, these methods cannot identify scanning attacks employed in cyber espionage because the probing packets assimilate into a number of normal ones. For example, the malware called Havex is customised to clandestinely acquire information from targeting ICSs using general request packets. The techniques to detect such scanning attacks using widespread packets await further investigation. Therefore, the goal of this study was to examine high performance methods to identify anomalies even if elaborate packets to avoid alert systems were employed for attacks against industrial control networks. In this paper, a novel detection model for anomalous packets concealing behind normal traffic in industrial control networks was proposed. For the proposal of the sophisticated detection method, we took particular note of packet flow regularity and employed the Markov-chain model to detect anomalies. Moreover, we regarded not only original packets but similar ones to them as normal packets to reduce false alerts because it was indicated that an anomaly detection model using the Markov-chain suffers from the ample false positives affected by a number of normal, irregular packets, namely noise. To calculate the similarity between packets based on the packet flow regularity, a vector representation tool called word2vec was employed. Whilst word2vec is utilised for the culculation of word similarity in natural language processing tasks, we applied the technique to packets in ICSs to calculate packet similarity. As a result, the Markov-chain with word2vec model identified scanning packets assimulating into normal packets in higher performance than the conventional Markov-chain model. In conclusion, employing both packet flow regularity and packet similarity in industrial control networks contributes to improving the performance of anomaly detection in ICSs.

  • JPEG Steganalysis Based on Multi-Projection Ensemble Discriminant Clustering

    Yan SUN  Guorui FENG  Yanli REN  

     
    LETTER-Information Network

      Pubricized:
    2018/10/15
      Vol:
    E102-D No:1
      Page(s):
    198-201

    In this paper, we propose a novel algorithm called multi-projection ensemble discriminant clustering (MPEDC) for JPEG steganalysis. The scheme makes use of the optimal projection of linear discriminant analysis (LDA) algorithm to get more projection vectors by using the micro-rotation method. These vectors are similar to the optimal vector. MPEDC combines unsupervised K-means algorithm to make a comprehensive decision classification adaptively. The power of the proposed method is demonstrated on three steganographic methods with three feature extraction methods. Experimental results show that the accuracy can be improved using iterative discriminant classification.

  • Side Scan Sonar Image Super Resolution via Region-Selective Sparse Coding

    Jaihyun PARK  Bonhwa KU  Youngsaeng JIN  Hanseok KO  

     
    LETTER-Image Processing and Video Processing

      Pubricized:
    2018/10/22
      Vol:
    E102-D No:1
      Page(s):
    210-213

    Side scan sonar using low frequency can quickly search a wide range, but the images acquired are of low quality. The image super resolution (SR) method can mitigate this problem. The SR method typically uses sparse coding, but accurately estimating sparse coefficients incurs substantial computational costs. To reduce processing time, we propose a region-selective sparse coding based SR system that emphasizes object regions. In particular, the region that contains interesting objects is detected for side scan sonar based underwater images so that the subsequent sparse coding based SR process can be selectively applied. Effectiveness of the proposed method is verified by the reduced processing time required for image reconstruction yet preserving the same level of visual quality as conventional methods.

  • Accelerating Large-Scale Interconnection Network Simulation by Cellular Automata Concept

    Takashi YOKOTA  Kanemitsu OOTSU  Takeshi OHKAWA  

     
    PAPER-Computer System

      Pubricized:
    2018/10/05
      Vol:
    E102-D No:1
      Page(s):
    52-74

    State-of-the-art parallel systems employ a huge number of computing nodes that are connected by an interconnection network. An interconnection network (ICN) plays an important role in a parallel system, since it is responsible to communication capability. In general, an ICN shows non-linear phenomena in its communication performance, most of them are caused by congestion. Thus, designing a large-scale parallel system requires sufficient discussions through repetitive simulation runs. This causes another problem in simulating large-scale systems within a reasonable cost. This paper shows a promising solution by introducing the cellular automata concept, which is originated in our prior work. Assuming 2D-torus topologies for simplification of discussion, this paper discusses fundamental design of router functions in terms of cellular automata, data structure of packets, alternative modeling of a router function, and miscellaneous optimization. The proposed models have a good affinity to GPGPU technology and, as representative speed-up results, the GPU-based simulator accelerates simulation upto about 1264 times from sequential execution on a single CPU. Furthermore, since the proposed models are applicable in the shared memory model, multithread implementation of the proposed methods achieve about 162 times speed-ups at the maximum.

  • Symmetric Decomposition of Convolution Kernels

    Jun OU  Yujian LI  

     
    LETTER-Biocybernetics, Neurocomputing

      Pubricized:
    2018/10/18
      Vol:
    E102-D No:1
      Page(s):
    219-222

    It is a hot issue that speeding up the network layers and decreasing the network parameters in convolutional neural networks (CNNs). In this paper, we propose a novel method, namely, symmetric decomposition of convolution kernels (SDKs). It symmetrically separates k×k convolution kernels into (k×1 and 1×k) or (1×k and k×1) kernels. We conduct the comparison experiments of the network models designed by SDKs on MNIST and CIFAR-10 datasets. Compared with the corresponding CNNs, we obtain good recognition performance, with 1.1×-1.5× speedup and more than 30% reduction of network parameters. The experimental results indicate our method is useful and effective for CNNs in practice, in terms of speedup performance and reduction of parameters.

  • A Robot Model That Obeys a Norm of a Human Group by Participating in the Group and Interacting with Its Members

    Yotaro FUSE  Hiroshi TAKENOUCHI  Masataka TOKUMARU  

     
    PAPER-Kansei Information Processing, Affective Information Processing

      Pubricized:
    2018/10/03
      Vol:
    E102-D No:1
      Page(s):
    185-194

    Herein, we proposed a robot model that will obey a norm of a certain group by interacting with the group members. Using this model, a robot system learns the norm of the group as a group member itself. The people with individual differences form a group and a characteristic norm that reflects the group members' personalities. When robots join a group that includes humans, the robots need to obey a characteristic norm: a group norm. We investigated whether the robot system generates a decision-making criterion to obey group norms by learning from interactions through reinforcement learning. In this experiment, human group members and the robot system answer same easy quizzes that could have several vague answers. When the group members answered differently from one another at first, we investigated whether the group members answered the quizzes while considering the group norm. To avoid bias toward the system's answers, one of the participants in a group only obeys the system, whereas the other participants are unaware of the system. Our experiments revealed that the group comprising the participants and the robot system forms group norms. The proposed model enables a social robot to make decisions socially in order to adjust their behaviors to common sense not only in a large human society but also in partial human groups, e.g., local communities. Therefore, we presumed that these robots can join human groups by interacting with its members. To adapt to these groups, these robots adjust their own behaviors. However, further studies are required to reveal whether the robots' answers affect people and whether the participants can form a group norm based on a robot's answer even in a situation wherein the participants recognize that they are interacting in a group that include a real robot. Moreover, some participants in a group do not know that the other participant only obeys the system's decisions and pretends to answer questions to prevent biased answers.

1041-1060hit(8214hit)