The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] CTI(8214hit)

1141-1160hit(8214hit)

  • Cross-Validation-Based Association Rule Prioritization Metric for Software Defect Characterization

    Takashi WATANABE  Akito MONDEN  Zeynep YÜCEL  Yasutaka KAMEI  Shuji MORISAKI  

     
    PAPER-Software Engineering

      Pubricized:
    2018/06/13
      Vol:
    E101-D No:9
      Page(s):
    2269-2278

    Association rule mining discovers relationships among variables in a data set, representing them as rules. These are expected to often have predictive abilities, that is, to be able to predict future events, but commonly used rule interestingness measures, such as support and confidence, do not directly assess their predictive power. This paper proposes a cross-validation -based metric that quantifies the predictive power of such rules for characterizing software defects. The results of evaluation this metric experimentally using four open-source data sets (Mylyn, NetBeans, Apache Ant and jEdit) show that it can improve rule prioritization performance over conventional metrics (support, confidence and odds ratio) by 72.8% for Mylyn, 15.0% for NetBeans, 10.5% for Apache Ant and 0 for jEdit in terms of SumNormPre(100) precision criterion. This suggests that the proposed metric can provide better rule prioritization performance than conventional metrics and can at least provide similar performance even in the worst case.

  • Attribute-Based Encryption for Range Attributes

    Nuttapong ATTRAPADUNG  Goichiro HANAOKA  Kazuto OGAWA  Go OHTAKE  Hajime WATANABE  Shota YAMADA  

     
    PAPER

      Vol:
    E101-A No:9
      Page(s):
    1440-1455

    Attribute-Based Encryption (ABE) is an advanced form of public-key encryption where access control mechanisms based on attributes and policies are possible. In conventional ABE, attributes are specified as strings. However, there are certain applications where it is useful to specify attributes as numerical values and consider a predicate that determines if a certain numerical range would include a certain value. Examples of these types of attributes include time, position coordinate, person's age, rank, identity, and so on. In this paper, we introduce ABE for boolean formulae over Range Membership (ABE-RM). We show generic methods to convert conventional ABE to ABE-RM. Our generic conversions are efficient as they introduce only logarithmic overheads (in key and ciphertext sizes), as opposed to trivial methods, which would pose linear overheads. By applying our conversion to previous ABE schemes, we obtain new efficient and expressive ABE-RM schemes. Previous works that considered ABE with range attributes are specific and can only deal with either a single relation of range membership (Paterson and Quaglia at SCN'10, and Kasamatsu et al. at SCN'12), or limited classes of policies, namely, only AND-gates of range attributes (Shi et al. at IEEE S&P'07, and some subsequent work). Our schemes are generic and can deal with expressive boolean formulae.

  • Wide Angle Scanning Circular Polarized Meta-Structured Antenna Array

    Chang-Hyun LEE  Jeong-Hae LEE  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2018/03/14
      Vol:
    E101-B No:9
      Page(s):
    2017-2023

    This paper presents a meta-structured circular polarized array antenna with wide scan angle. In order to widen the scanning angle of array antennas, this paper investigates unit antenna beamwidth and the coupling effects between array elements, both of which directly affect the steering performance. As a result, the optimal array distance, the mode configuration, and the antenna structure are elucidated. By using the features of the miniaturized mu-zero resonance (MZR) antenna, it is possible to design the antenna at optimum array distance for wide beamwidth. In addition, by modifying via position and gap configuration of the antenna, it is possible to optimize the mode configuration for optimal isolation. Finally, the 3dB steerable angle of 66° is successfully demonstrated using a 1x8 MZR CP antenna array without any additional decoupling structure. The measured beam patterns at a scan angle of 0°, 22°, 44°, and 66°agree well with the simulated beam patterns.

  • Meeting Tight Security for Multisignatures in the Plain Public Key Model

    Naoto YANAI  

     
    PAPER

      Vol:
    E101-A No:9
      Page(s):
    1484-1493

    Multisignatures are digital signatures for a group consisting of multiple signers where each signer signs common documents via interaction with its co-signers and the data size of the resultant signatures for the group is independent of the number of signers. In this work, we propose a multisignature scheme, whose security can be tightly reduced to the CDH problem in bilinear groups, in the strongest security model where nothing more is required than that each signer has a public key, i.e., the plain public key model. Loosely speaking, our main idea for a tight reduction is to utilize a three-round interaction in a full-domain hash construction. Namely, we surmise that a full-domain hash construction with three-round interaction will become tightly secure under the CDH problem. In addition, we show that the existing scheme by Zhou et al. (ISC 2011) can be improved to a construction with a tight security reduction as an application of our proof framework.

  • Computational Power of Threshold Circuits of Energy at most Two

    Hiroki MANIWA  Takayuki OKI  Akira SUZUKI  Kei UCHIZAWA  Xiao ZHOU  

     
    PAPER

      Vol:
    E101-A No:9
      Page(s):
    1431-1439

    The energy of a threshold circuit C is defined to be the maximum number of gates outputting ones for an input assignment, where the maximum is taken over all the input assignments. In this paper, we study computational power of threshold circuits of energy at most two. We present several results showing that the computational power of threshold circuits of energy one and the counterpart of energy two are remarkably different. In particular, we give an explicit function which requires an exponential size for threshold circuits of energy one, but is computable by a threshold circuit of size just two and energy two. We also consider MOD functions and Generalized Inner Product functions, and show that these functions also require exponential size for threshold circuits of energy one, but are computable by threshold circuits of substantially less size and energy two.

  • A Unified Neural Network for Quality Estimation of Machine Translation

    Maoxi LI  Qingyu XIANG  Zhiming CHEN  Mingwen WANG  

     
    LETTER-Natural Language Processing

      Pubricized:
    2018/06/18
      Vol:
    E101-D No:9
      Page(s):
    2417-2421

    The-state-of-the-art neural quality estimation (QE) of machine translation model consists of two sub-networks that are tuned separately, a bidirectional recurrent neural network (RNN) encoder-decoder trained for neural machine translation, called the predictor, and an RNN trained for sentence-level QE tasks, called the estimator. We propose to combine the two sub-networks into a whole neural network, called the unified neural network. When training, the bidirectional RNN encoder-decoder are initialized and pre-trained with the bilingual parallel corpus, and then, the networks are trained jointly to minimize the mean absolute error over the QE training samples. Compared with the predictor and estimator approach, the use of a unified neural network helps to train the parameters of the neural networks that are more suitable for the QE task. Experimental results on the benchmark data set of the WMT17 sentence-level QE shared task show that the proposed unified neural network approach consistently outperforms the predictor and estimator approach and significantly outperforms the other baseline QE approaches.

  • An Application of Intuitionistic Fuzzy Sets to Improve Information Extraction from Thai Unstructured Text

    Peerasak INTARAPAIBOON  Thanaruk THEERAMUNKONG  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2018/05/23
      Vol:
    E101-D No:9
      Page(s):
    2334-2345

    Multi-slot information extraction, also known as frame extraction, is a task that identify several related entities simultaneously. Most researches on this task are concerned with applying IE patterns (rules) to extract related entities from unstructured documents. An important obstacle for the success in this task is unknowing where text portions containing interested information are. This problem is more complicated when involving languages with sentence boundary ambiguity, e.g. the Thai language. Applying IE rules to all reasonable text portions can degrade the effect of this obstacle, but it raises another problem that is incorrect (unwanted) extractions. This paper aims to present a method for removing these incorrect extractions. In the method, extractions are represented as intuitionistic fuzzy sets, and a similarity measure for IFSs is used to calculate distance between IFS of an unclassified extraction and that of each already-classified extraction. The concept of k nearest neighbor is adopted to design whether the unclassified extraction is correct or not. From the experiment on various domains, the proposed technique improves extraction precision while satisfactorily preserving recall.

  • Review Rating Prediction on Location-Based Social Networks Using Text, Social Links, and Geolocations

    Yuehua WANG  Zhinong ZHONG  Anran YANG  Ning JING  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2018/06/01
      Vol:
    E101-D No:9
      Page(s):
    2298-2306

    Review rating prediction is an important problem in machine learning and data mining areas and has attracted much attention in recent years. Most existing methods for review rating prediction on Location-Based Social Networks only capture the semantics of texts, but ignore user information (social links, geolocations, etc.), which makes them less personalized and brings down the prediction accuracy. For example, a user's visit to a venue may be influenced by their friends' suggestions or the travel distance to the venue. To address this problem, we develop a review rating prediction framework named TSG by utilizing users' review Text, Social links and the Geolocation information with machine learning techniques. Experimental results demonstrate the effectiveness of the framework.

  • Sparse Graph Based Deep Learning Networks for Face Recognition

    Renjie WU  Sei-ichiro KAMATA  

     
    PAPER

      Pubricized:
    2018/06/20
      Vol:
    E101-D No:9
      Page(s):
    2209-2219

    In recent years, deep learning based approaches have substantially improved the performance of face recognition. Most existing deep learning techniques work well, but neglect effective utilization of face correlation information. The resulting performance loss is noteworthy for personal appearance variations caused by factors such as illumination, pose, occlusion, and misalignment. We believe that face correlation information should be introduced to solve this network performance problem originating from by intra-personal variations. Recently, graph deep learning approaches have emerged for representing structured graph data. A graph is a powerful tool for representing complex information of the face image. In this paper, we survey the recent research related to the graph structure of Convolutional Neural Networks and try to devise a definition of graph structure included in Compressed Sensing and Deep Learning. This paper devoted to the story explain of two properties of our graph - sparse and depth. Sparse can be advantageous since features are more likely to be linearly separable and they are more robust. The depth means that this is a multi-resolution multi-channel learning process. We think that sparse graph based deep neural network can more effectively make similar objects to attract each other, the relative, different objects mutually exclusive, similar to a better sparse multi-resolution clustering. Based on this concept, we propose a sparse graph representation based on the face correlation information that is embedded via the sparse reconstruction and deep learning within an irregular domain. The resulting classification is remarkably robust. The proposed method achieves high recognition rates of 99.61% (94.67%) on the benchmark LFW (YTF) facial evaluation database.

  • Nash Equilibria in Combinatorial Auctions with Item Bidding and Subadditive Symmetric Valuations

    Hiroyuki UMEDA  Takao ASANO  

     
    PAPER

      Vol:
    E101-A No:9
      Page(s):
    1324-1333

    We discuss Nash equilibria in combinatorial auctions with item bidding. Specifically, we give a characterization for the existence of a Nash equilibrium in a combinatorial auction with item bidding when valuations by n bidders satisfy symmetric and subadditive properties. By this characterization, we can obtain an algorithm for deciding whether a Nash equilibrium exists in such a combinatorial auction.

  • Video Saliency Detection Using Spatiotemporal Cues

    Yu CHEN  Jing XIAO  Liuyi HU  Dan CHEN  Zhongyuan WANG  Dengshi LI  

     
    PAPER

      Pubricized:
    2018/06/20
      Vol:
    E101-D No:9
      Page(s):
    2201-2208

    Saliency detection for videos has been paid great attention and extensively studied in recent years. However, various visual scene with complicated motions leads to noticeable background noise and non-uniformly highlighting the foreground objects. In this paper, we proposed a video saliency detection model using spatio-temporal cues. In spatial domain, the location of foreground region is utilized as spatial cue to constrain the accumulation of contrast for background regions. In temporal domain, the spatial distribution of motion-similar regions is adopted as temporal cue to further suppress the background noise. Moreover, a backward matching based temporal prediction method is developed to adjust the temporal saliency according to its corresponding prediction from the previous frame, thus enforcing the consistency along time axis. The performance evaluation on several popular benchmark data sets validates that our approach outperforms existing state-of-the-arts.

  • Fast Enumeration of All Pareto-Optimal Solutions for 0-1 Multi-Objective Knapsack Problems Using ZDDs

    Hirofumi SUZUKI  Shin-ichi MINATO  

     
    PAPER

      Vol:
    E101-A No:9
      Page(s):
    1375-1382

    Finding Pareto-optimal solutions is a basic approach in multi-objective combinatorial optimization. In this paper, we focus on the 0-1 multi-objective knapsack problem, and present an algorithm to enumerate all its Pareto-optimal solutions, which improves upon the method proposed by Bazgan et al. Our algorithm is based on dynamic programming techniques using an efficient data structure called zero-suppressed binary decision diagram (ZDD), which handles a set of combinations compactly. In our algorithm, we utilize ZDDs for storing all the feasible solutions compactly, and pruning inessential partial solutions as quickly as possible. As an output of the algorithm, we can obtain a useful ZDD indexing all the Pareto-optimal solutions. The results of our experiments show that our algorithm is faster than the previous method for various types of three- and four-objective instances, which are difficult problems to solve.

  • An Edge Detection Method Based on Wavelet Transform at Arbitrary Angles

    Su LIU  Xingguang GENG  Yitao ZHANG  Shaolong ZHANG  Jun ZHANG  Yanbin XIAO  Chengjun HUANG  Haiying ZHANG  

     
    PAPER-Biological Engineering

      Pubricized:
    2018/06/13
      Vol:
    E101-D No:9
      Page(s):
    2392-2400

    The quality of edge detection is related to detection angle, scale, and threshold. There have been many algorithms to promote edge detection quality by some rules about detection angles. However these algorithm did not form rules to detect edges at an arbitrary angle, therefore they just used different number of angles and did not indicate optimized number of angles. In this paper, a novel edge detection algorithm is proposed to detect edges at arbitrary angles and optimized number of angles in the algorithm is introduced. The algorithm combines singularity detection with Gaussian wavelet transform and edge detection at arbitrary directions and contain five steps: 1) An image is divided into some pixel lines at certain angle in the range from 45° to 90° according to decomposition rules of this paper. 2) Singularities of pixel lines are detected and form an edge image at the certain angle. 3) Many edge images at different angles form a final edge images. 4) Detection angles in the range from 45° to 90° are extended to range from 0° to 360°. 5) Optimized number of angles for the algorithm is proposed. Then the algorithm with optimized number of angles shows better performances.

  • Efficient Approach for Mitigating Mobile Phishing Attacks

    Hyungkyu LEE  Younho LEE  Changho SEO  Hyunsoo YOON  

     
    PAPER-Internet

      Pubricized:
    2018/03/23
      Vol:
    E101-B No:9
      Page(s):
    1982-1996

    We propose a method for efficiently detecting phishing attacks in mobile environments. When a user visits a website of a certain URL, the proposed method first compares the URL to a generated whitelist. If the URL is not in the whitelist, it detects if the site is a phishing site based on the results of Google search with a carefully refined URL. In addition, the phishing detection is performed only when the user provides input to the website, thereby reducing the frequency of invoking phishing detection to decrease the amount of power used. We implemented the proposed method and used 8315 phishing sites and the same number of legitimate websites for evaluating the performance of the proposed method. We achieved a phishing detection rate of 99.22% with 81.22% reduction in energy consumption as compared to existing approaches that also use search engine for phishing detection. Moreover, because the proposed method does not employ any other algorithm, software, or comparison group, the proposed method can be easily deployed.

  • Energy Efficient Resource Allocation for Downlink Cooperative Non-Orthogonal Multiple Access Systems

    Zi-fu FAN  Qu CHENG  Zheng-qiang WANG  Xian-hui MENG  Xiao-yu WAN  

     
    LETTER-Communication Theory and Signals

      Vol:
    E101-A No:9
      Page(s):
    1603-1607

    In this letter, we study the resource allocation for the downlink cooperative non-orthogonal multiple access (NOMA) systems based on the amplifying-and-forward protocol relay transmission. A joint power allocation and amplification gain selection scheme are proposed. Fractional programming and the iterative algorithm based on the Lagrangian multiplier are used to allocate the transmit power to maximize the energy efficiency (EE) of the systems. Simulation results show that the proposed scheme can achieve higher energy efficiency compared with the minimum power transmission (MPT-NOMA) scheme and the conventional OMA scheme.

  • Hardware Architecture for High-Speed Object Detection Using Decision Tree Ensemble

    Koichi MITSUNARI  Jaehoon YU  Takao ONOYE  Masanori HASHIMOTO  

     
    PAPER

      Vol:
    E101-A No:9
      Page(s):
    1298-1307

    Visual object detection on embedded systems involves a multi-objective optimization problem in the presence of trade-offs between power consumption, processing performance, and detection accuracy. For a new Pareto solution with high processing performance and low power consumption, this paper proposes a hardware architecture for decision tree ensemble using multiple channels of features. For efficient detection, the proposed architecture utilizes the dimensionality of feature channels in addition to parallelism in image space and adopts task scheduling to attain random memory access without conflict. Evaluation results show that an FPGA implementation of the proposed architecture with an aggregated channel features pedestrian detector can process 229 million samples per second at 100MHz operation frequency while it requires a relatively small amount of resources. Consequently, the proposed architecture achieves 350fps processing performance for 1080P Full HD images and outperforms conventional object detection hardware architectures developed for embedded systems.

  • Depth Two (n-2)-Majority Circuits for n-Majority

    Kazuyuki AMANO  Masafumi YOSHIDA  

     
    LETTER

      Vol:
    E101-A No:9
      Page(s):
    1543-1545

    We present an explicit construction of a MAJn-2 °MAJn-2 circuit computing MAJn for every odd n≥7. This gives a partial solution to an open problem by Kulikov and Podolskii (Proc. of STACS 2017, Article No.49).

  • Improving Range Resolution by Triangular Decomposition for Small UAV Radar Altimeters

    Di BAI  Zhenghai WANG  Mao TIAN  Xiaoli CHEN  

     
    PAPER-Sensing

      Pubricized:
    2018/02/20
      Vol:
    E101-B No:8
      Page(s):
    1933-1939

    A triangular decomposition-based multipath super-resolution method is proposed to improve the range resolution of small unmanned aerial vehicle (UAV) radar altimeters that use a single channel with continuous direct spread waveform. In the engineering applications of small UAV radar altimeter, multipath scenarios are quite common. When the conventional matched filtering process is used under these environments, it is difficult to identify multiple targets in the same range cell due to the overlap between echoes. To improve the performance, we decompose the overlapped peaks yielded by matched filtering into a series of basic triangular waveforms to identify various targets with different time-shifted correlations of the pseudo-noise (PN) sequence. Shifting the time scale enables targets in the same range resolution unit to be identified. Both theoretical analysis and experiments show that the range resolution can be improved significantly, as it outperforms traditional matched filtering processes.

  • Detecting Unsafe Raw Pointer Dereferencing Behavior in Rust

    Zhijian HUANG  Yong Jun WANG  Jing LIU  

     
    LETTER-Dependable Computing

      Pubricized:
    2018/05/14
      Vol:
    E101-D No:8
      Page(s):
    2150-2153

    The rising systems programming language Rust is fast, efficient and memory safe. However, improperly dereferencing raw pointers in Rust causes new safety problems. In this paper, we present a detailed analysis into these problems and propose a practical hybrid approach to detecting unsafe raw pointer dereferencing behaviors. Our approach employs pattern matching to identify functions that can be used to generate illegal multiple mutable references (We define them as thief function) and instruments the dereferencing operation in order to perform dynamic checking at runtime. We implement a tool named UnsafeFencer and has successfully identified 52 thief functions in 28 real-world crates*, of which 13 public functions are verified to generate multiple mutable references.

  • Ultra-Low Field MRI Food Inspection System Using HTS-SQUID with Flux Transformer

    Saburo TANAKA  Satoshi KAWAGOE  Kazuma DEMACHI  Junichi HATTA  

     
    PAPER-Superconducting Electronics

      Vol:
    E101-C No:8
      Page(s):
    680-684

    We are developing an Ultra-Low Field (ULF) Magnetic Resonance Imaging (MRI) system with a tuned high-Tc (HTS)-rf-SQUID for food inspection. We previously reported that a small hole in a piece of cucumber can be detected. The acquired image was based on filtered back-projection reconstruction using a polarizing permanent magnet. However the resolution of the image was insufficient for food inspection and took a long time to process. The purpose of this study is to improve image quality and shorten processing time. We constructed a specially designed cryostat, which consists of a liquid nitrogen tank for cooling an electromagnetic polarizing coil (135mT) at 77K and a room temperature bore. A Cu pickup coil was installed at the room temperature bore and detected an NMR signal from a sample. The signal was then transferred to an HTS SQUID via an input coil. Following a proper MRI sequence, spatial frequency data at 64×32 points in k-space were obtained. Then, a 2D-FFT (Fast Fourier Transformation) method was applied to reconstruct the 2D-MR images. As a result, we successfully obtained a clear water image of the characters “TUT”, which contains a narrowest width of 0.5mm. The imaging time was also shortened by a factor of 10 when compared to the previous system.

1141-1160hit(8214hit)