The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] CTI(8239hit)

1441-1460hit(8239hit)

  • Kernel Rootkits Detection Method by Monitoring Branches Using Hardware Features

    Toshihiro YAMAUCHI  Yohei AKAO  

     
    LETTER

      Pubricized:
    2017/07/21
      Vol:
    E100-D No:10
      Page(s):
    2377-2381

    An operating system is an essential piece of software that manages hardware and software resources. Thus, attacks on an operating system kernel using kernel rootkits pose a particularly serious threat. Detecting an attack is difficult when the operating system kernel is infected with a kernel rootkit. For this reason, handling an attack will be delayed causing an increase in the amount of damage done to a computer system. In this paper, we propose Kernel Rootkits Guard (KRGuard), which is a new method to detect kernel rootkits that monitors branch records in the kernel space. Since many kernel rootkits make branches that differ from the usual branches in the kernel space, KRGuard can detect these differences by using the hardware features of commodity processors. Our evaluation shows that KRGuard can detect kernel rootkits that involve new branches in the system call handler processing with small overhead.

  • Analysis and Design of a Full 360 degrees, Harmonic-Suppressed Hybrid Coupler Phase Shifter

    Chai Eu GUAN  Ahmed I.A. GALAL  Nagamitsu MIZOGUCHI  Akira ISHIKAWA  Shugo FUKAGAWA  Ryuji KITAYA  Haruichi KANAYA  

     
    PAPER

      Vol:
    E100-C No:10
      Page(s):
    875-883

    The analysis and design of a full 360 degrees hybrid coupler phase shifter with integrated distributed elements low pass filters is presented. Pi-section filter is incorporated into hybrid coupler phase shifter for harmonic suppression. The physical size of the proposed structure is close to that of the conventional hybrid coupler phase shifter. The maximum phase shift range is bounded by the port impedance ratio of the hybrid coupler phase shifter. Furthermore, the phase shift range is reduced if series inductance in the reflective load deviates from the optimum value. Numerical and parametric analyses are used to find the equivalent circuit of the pi-section filter for consistent relative phase shift. To validate our analysis, the proposed phase shifter operates at 8.6GHz was fabricated and measured. Over the frequency range of interest, the fabricated phase shifter suppresses second harmonic and achieves analog phase shift of 0 to 360 degrees at the passband, agreeing with the theoretical and simulation results.

  • Efficient Soft-Output Lattice-Reduction-Aided MIMO Detector with Low Complexity

    Hyunsub KIM  Jaeseok KIM  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2017/04/14
      Vol:
    E100-B No:10
      Page(s):
    1952-1958

    In this paper, an improved lattice reduction (LR)-aided soft-output multiple-input multiple-output (MIMO) detector is proposed. Conventional LR-aided soft-output MIMO detectors involve the empty set problem (ESP), in which an entry with a particular bit in the candidate list might not exist. To overcome the performance degradation resulting from this ESP, a post-processing algorithm that modifies the candidate list is proposed. The proposed algorithm efficiently resolves the ESP by utilizing the near-orthogonality of the lattice-reduced system model so that the bit error rate (BER) performance is enhanced. In addition, as the complexity of the candidate list generation is reduced with the aid of the post-processing algorithm, the overall complexity is also reduced. Simulation results and the complexity comparisons demonstrate that our proposed method lowers the required Eb/No by 4-5 dB at the BER of 10-5 and the complexity by 13%-55%, compared to the conventional method.

  • A Single-Dimensional Interface for Arranging Multiple Audio Sources in Three-Dimensional Space

    Kento OHTANI  Kenta NIWA  Kazuya TAKEDA  

     
    PAPER-Music Information Processing

      Pubricized:
    2017/06/26
      Vol:
    E100-D No:10
      Page(s):
    2635-2643

    A single-dimensional interface which enables users to obtain diverse localizations of audio sources is proposed. In many conventional interfaces for arranging audio sources, there are multiple arrangement parameters, some of which allow users to control positions of audio sources. However, it is difficult for users who are unfamiliar with these systems to optimize the arrangement parameters since the number of possible settings is huge. We propose a simple, single-dimensional interface for adjusting arrangement parameters, allowing users to sample several diverse audio source arrangements and easily find their preferred auditory localizations. To select subsets of arrangement parameters from all of the possible choices, auditory-localization space vectors (ASVs) are defined to represent the auditory localization of each arrangement parameter. By selecting subsets of ASVs which are approximately orthogonal, we can choose arrangement parameters which will produce diverse auditory localizations. Experimental evaluations were conducted using music composed of three audio sources. Subjective evaluations confirmed that novice users can obtain diverse localizations using the proposed interface.

  • READER: Robust Semi-Supervised Multi-Label Dimension Reduction

    Lu SUN  Mineichi KUDO  Keigo KIMURA  

     
    PAPER-Pattern Recognition

      Pubricized:
    2017/06/29
      Vol:
    E100-D No:10
      Page(s):
    2597-2604

    Multi-label classification is an appealing and challenging supervised learning problem, where multiple labels, rather than a single label, are associated with an unseen test instance. To remove possible noises in labels and features of high-dimensionality, multi-label dimension reduction has attracted more and more attentions in recent years. The existing methods usually suffer from several problems, such as ignoring label outliers and label correlations. In addition, most of them emphasize on conducting dimension reduction in an unsupervised or supervised way, therefore, unable to utilize the label information or a large amount of unlabeled data to improve the performance. In order to cope with these problems, we propose a novel method termed Robust sEmi-supervised multi-lAbel DimEnsion Reduction, shortly READER. From the viewpoint of empirical risk minimization, READER selects most discriminative features for all the labels in a semi-supervised way. Specifically, the ℓ2,1-norm induced loss function and regularization term make READER robust to the outliers in the data points. READER finds a feature subspace so as to keep originally neighbor instances close and embeds labels into a low-dimensional latent space nonlinearly. To optimize the objective function, an efficient algorithm is developed with convergence property. Extensive empirical studies on real-world datasets demonstrate the superior performance of the proposed method.

  • Sub-fF-Capacitance Photonic-Crystal Photodetector Towards fJ/bit On-Chip Receiver Open Access

    Kengo NOZAKI  Shinji MATSUO  Koji TAKEDA  Takuro FUJII  Masaaki ONO  Abdul SHAKOOR  Eiichi KURAMOCHI  Masaya NOTOMI  

     
    INVITED PAPER

      Vol:
    E100-C No:10
      Page(s):
    750-758

    An ultra-compact InGaAs photodetector (PD) is demonstrated based on a photonic crystal (PhC) waveguide to meet the demand for a photoreceiver for future dense photonic integration. Although the PhC-PD has a length of only 1.7µm and a capacitance of less than 1fF, a high responsivity of 1A/W was observed both theoretically and experimentally. This low capacitance PD allows us to expect a resistor-loaded receiver to be realized that requires no electrical amplifiers. We fabricated a resistor-loaded PhC-PD for light-to-voltage conversion, and demonstrated a kV/W efficiency with a GHz bandwidth without using amplifiers. This will lead to a photoreceiver with an ultralow energy consumption of less than 1fJ/bit, which is a step along the road to achieving a dense photonic network and processor on a chip.

  • Power Dependent Impedance Measurement Exploiting an Oscilloscope and Möbius Transformation

    Sonshu SAKIHARA  Masaru TAKANA  Naoki SAKAI  Takashi OHIRA  

     
    PAPER

      Vol:
    E100-C No:10
      Page(s):
    918-923

    This paper presents an approach to nonlinear impedance measurement exploiting an oscilloscope and Möbius transformation. Proposed system consists of a linear 4-port network and an oscilloscope. One of the port is excited by a high power source. The power is delivered to the second port, which is loaded with a DUT. Another set of two ports are used to observe a voltage set. This voltage set gives the impedance of the DUT through Möbius transformation. We formulated measurability M of the system, and derived the condition that M becomes constant for any DUT. To meet the condition, we propose a linear 4-port network consisting of a quarter-wavelength transmission line and resistors. We confirm the validity and utility of the proposed system by measuring the impedance of incandescent bulbs and an RF diode rectifier.

  • A 15GHz-Band 4-Channel Transmit/Receive RF Core-Chip for High SHF Wide-Band Massive MIMO in 5G

    Koji TSUTSUMI  Takaya MARUYAMA  Wataru YAMAMOTO  Takanobu FUJIWARA  Tatsuya HAGIWARA  Ichiro SOMADA  Eiji TANIGUCHI  Mitsuhiro SHIMOZAWA  

     
    PAPER

      Vol:
    E100-C No:10
      Page(s):
    825-832

    A 15GHz-band 4-channel transmit/receive RF core-chip is presented for high SHF wide-band massive MIMO in 5G. In order to realize small RF frontend for 5G base stations, both 6bit phase shifters (PS) and 0.25 dB resolution variable gain amplifiers (VGA) are integrated in TX and RX paths of 4-channels on the chip. A PS calibration technique is applied to compensate the error of 6bit PS caused by process variations. A common gate current steering topology with tail current control is used for VGA to enhance the gain control accuracy. The 15GHz-band RF core-chip fabricated in 65 nm CMOS process achieved phase control error of 1.9deg. rms., and amplitude control error of 0.23 dB. rms.

  • A Compact RF Frontend Module of Active Phased Array Antenna for High SHF Wideband Massive MIMO in 5G Open Access

    Hideyuki NAKAMIZO  Shintaro SHINJO  Koji TSUTSUMI  Satoshi YAMAGUCHI  Hideharu YOSHIOKA  Akihiro OKAZAKI  Akinori TAIRA  Kenichi TAJIMA  

     
    INVITED PAPER

      Vol:
    E100-C No:10
      Page(s):
    818-824

    In order to meet various requirements for the 5th generation mobile communication, a high SHF wideband massive-MIMO system has been widely studied which offers wide system bandwidth and high spectral efficiency. A hybrid beamforming configuration which combines analog beamforming by APAA (Active Phased Array Antenna) and digital MIMO signal processing is one of the promising approaches for reducing the complexity and power consumption of the high SHF wideband massive-MIMO system. In order to realize the hybrid beamforming configuration in high SHF band, small size, low power consumption and precise beam forming over the wide-band frequency range are strongly required for RF frontend which constitutes analog beam former. In this paper, a compact RF frontend module for high SHF wideband 5G small cell base station is proposed. This RF frontend module is prototyped. Various key components of the RF frontend module are fabricated in 15GHz band, and measured results show that high RF performances are able to meet the requirements of RF frontend.

  • Web-Browsing QoE Estimation Model

    Toshiko TOMINAGA  Kanako SATO  Noriko YOSHIMURA  Masataka MASUDA  Hitoshi AOKI  Takanori HAYASHI  

     
    PAPER-Network

      Pubricized:
    2017/03/29
      Vol:
    E100-B No:10
      Page(s):
    1837-1845

    Web browsing services are expanding as smartphones are becoming increasingly popular worldwide. To provide customers with appropriate quality of web-browsing services, quality design and in-service quality management on the basis of quality of experience (QoE) is important. We propose a web-browsing QoE estimation model. The most important QoE factor for web-browsing is the waiting time for a web page to load. Next, the variation in the communication quality based on a mobile network should be considered. We developed a subjective quality assessment test to clarify QoE characteristics in terms of waiting time using 20 different types of web pages and constructed a web-page QoE estimation model. We then conducted a subjective quality assessment test of web-browsing to clarify the relationship between web-page QoE and web-browsing QoE for three web sites. We obtained the following two QoE characteristics. First, the main factor influencing web-browsing QoE is the average web-page QoE. Second, when web-page QoE variation occurs, a decrease in web-page QoE with a huge amplitude causes the web-browsing QoE to decrease. We used these characteristics in constructing our web-browsing QoE estimation model. The verification test results using non-training data indicate the accuracy of the model. We also show that our findings are applicable to web-browsing quality design and solving management issues on the basis of QoE.

  • Two Classes of Optimal Constant Composition Codes from Zero Difference Balanced Functions

    Bing LIU  Xia LI  Feng CHENG  

     
    LETTER-Coding Theory

      Vol:
    E100-A No:10
      Page(s):
    2183-2186

    Constant composition codes (CCCs) are a special class of constant-weight codes. They include permutation codes as a subclass. The study and constructions of CCCs with parameters meeting certain bounds have been an interesting research subject in coding theory. A bridge from zero difference balanced (ZDB) functions to CCCs with parameters meeting the Luo-Fu-Vinck-Chen bound has been established by Ding (IEEE Trans. Information Theory 54(12) (2008) 5766-5770). This provides a new approach for obtaining optimal CCCs. The objective of this letter is to construct two classes of ZDB functions whose parameters not covered in the literature, and then obtain two classes of optimal CCCs meeting the Luo-Fu-Vinck-Chen bound from these new ZDB functions.

  • Next-Activity Set Prediction Based on Sequence Partitioning to Reduce Activity Pattern Complexity in the Multi-User Smart Space

    Younggi KIM  Younghee LEE  

     
    PAPER-Pattern Recognition

      Pubricized:
    2017/07/18
      Vol:
    E100-D No:10
      Page(s):
    2587-2596

    Human activity prediction has become a prerequisite for service recommendation and anomaly detection systems in a smart space including ambient assisted living (AAL) and activities of daily living (ADL). In this paper, we present a novel approach to predict the next-activity set in a multi-user smart space. Differing from the majority of the previous studies considering single-user activity patterns, our study considers multi-user activities that occur with a large variety of patterns. Its complexity increases exponentially according to the number of users. In the multi-user smart space, there can be inevitably multiple next-activity candidates after multi-user activities occur. To solve the next-activity problem in a multi-user situation, we propose activity set prediction rather than one activity prediction. We also propose activity sequence partitioning to reduce the complexity of the multi-user activity pattern. This divides an activity sequence into start, ongoing, and finish zones based on the features in the tendency of activity occurrences. The majority of the activities in a multi-user environment occur at the beginning or end, rather than the middle, of an activity sequence. Furthermore, the types of activities typically occurring in each zone can be sufficiently distinguishable. Exploiting these characteristics, we suggest a two-step procedure to predict the next-activity set utilizing a long short-term memory (LSTM) model. The first step identifies the zones to which current activities belong. In the next step, we construct three different LSTM models to predict the next-activity set in each zone. To evaluate the proposed approach, we experimented using a real dataset generated from our campus testbed. Our experiments confirmed the complexity reduction and high accuracy in the next-activity set prediction. Thus, it can be effectively utilized for various applications with context-awareness in a multi-user smart space.

  • Relay Selection Scheme for Improved Performance in the Wireless Communication Systems Based on OFDM

    Sang-Young KIM  Won-Chang KIM  Hyoung-Kyu SONG  

     
    LETTER-Communication Theory and Signals

      Vol:
    E100-A No:10
      Page(s):
    2200-2203

    This letter proposes a relay selection scheme in order to improve a performance in the wireless cooperative communication system. The cooperative communication uses the relays in order to obtain a improved performance. The relay selection scheme has a great influence on the performance of the wireless cooperative communication. Because the diversity gain is affected by the superposition of the channels, a superposition of the channels is important in the wireless cooperative communication. The constructive superposition of the channels can improve the performance of the wireless cooperative communication. Because the conventional schemes do not consider the superposition of the channels, the conventional schemes are not suitable for the cooperative communication using the multiple relays. The new scheme considers the superposition of channels and selects the relays that can achieve the constructive superposition. Therefore, the new scheme can provide the improved performance by using the phase information between channels. The simulation results show that the bit error performance of the proposed scheme is better than the conventional schemes.

  • A 100-MHz 51.2-Gb/s Packet Lookup Engine with Automatic Table Update Function

    Kousuke IMAMURA  Ryota HONDA  Yoshifumi KAWAMURA  Naoki MIURA  Masami URANO  Satoshi SHIGEMATSU  Tetsuya MATSUMURA  Yoshio MATSUDA  

     
    PAPER-Communication Theory and Signals

      Vol:
    E100-A No:10
      Page(s):
    2123-2134

    The development of an extremely efficient packet inspection algorithm for lookup engines is important in order to realize high throughput and to lower energy dissipation. In this paper, we propose a new lookup engine based on a combination of a mismatch detection circuit and a linked-list hash table. The engine has an automatic rule registration and deletion function; the results are that it is only necessary to input rules, and the various tables included in the circuits, such as the Mismatch Table, Index Table, and Rule Table, will be automatically configured using the embedded hardware. This function utilizes a match/mismatch assessment for normal packet inspection operations. An experimental chip was fabricated using 40-nm 8-metal CMOS process technology. The chip operates at a frequency of 100MHz under a power supply voltage of VDD =1.1V. A throughput of 100Mpacket/s (=51.2Gb/s) is obtained at an operating frequency of 100MHz, which is three times greater than the throughput of 33Mpacket/s obtained with a conventional lookup engine without a mismatch detection circuit. The measured energy dissipation was a 1.58pJ/b·Search.

  • Speech Enhancement with Impact Noise Activity Detection Based on the Kurtosis of an Instantaneous Power Spectrum

    Naoto SASAOKA  Naoya HAMAHASHI  Yoshio ITOH  

     
    PAPER-Digital Signal Processing

      Vol:
    E100-A No:9
      Page(s):
    1942-1950

    In a speech enhancement system for impact noise, it is important for any impact noise activity to be detected. However, because impact noise occurs suddenly, it is not always easy to detect. We propose a method for impact noise activity detection based on the kurtosis of an instantaneous power spectrum. The continuous duration of a generalized impact noise is shorter than that of speech, and the power of such impact noise varies dramatically. Consequently, the distribution of the instantaneous power spectrum of impact noise is different from that of speech. The proposed detection takes advantage of kurtosis, which depends on the sharpness and skirt of the distribution. Simulation results show that the proposed noise activity detection improves the performance of the speech enhancement system.

  • A Compact Tree Representation of an Antidictionary

    Takahiro OTA  Hiroyoshi MORITA  

     
    PAPER-Information Theory

      Vol:
    E100-A No:9
      Page(s):
    1973-1984

    In both theoretical analysis and practical use for an antidictionary coding algorithm, an important problem is how to encode an antidictionary of an input source. This paper presents a proposal for a compact tree representation of an antidictionary built from a circular string for an input source. We use a technique for encoding a tree in the compression via substring enumeration to encode a tree representation of the antidictionary. Moreover, we propose a new two-pass universal antidictionary coding algorithm by means of the proposal tree representation. We prove that the proposed algorithm is asymptotic optimal for a stationary ergodic source.

  • Group Signature with Deniability: How to Disavow a Signature

    Ai ISHIDA  Keita EMURA  Goichiro HANAOKA  Yusuke SAKAI  Keisuke TANAKA  

     
    PAPER

      Vol:
    E100-A No:9
      Page(s):
    1825-1837

    Group signatures are a class of digital signatures with enhanced privacy. By using this type of signature, a user can sign a message on behalf of a specific group without revealing his identity, but in the case of a dispute, an authority can expose the identity of the signer. However, it is not always the case that we need to know the specific identity of a signature. In this paper, we propose the notion of deniable group signatures, where the authority can issue a proof showing that the specified user is NOT the signer of a signature, without revealing the actual signer. We point out that existing efficient non-interactive zero-knowledge proof systems cannot be straightforwardly applied to prove such a statement. We circumvent this problem by giving a fairly practical construction through extending the Groth group signature scheme (ASIACRYPT 2007). In particular, a denial proof in our scheme consists of 96 group elements, which is about twice the size of a signature in the Groth scheme. The proposed scheme is provably secure under the same assumptions as those of the Groth scheme.

  • Packed Compact Tries: A Fast and Efficient Data Structure for Online String Processing

    Takuya TAKAGI  Shunsuke INENAGA  Kunihiko SADAKANE  Hiroki ARIMURA  

     
    PAPER

      Vol:
    E100-A No:9
      Page(s):
    1785-1793

    We present a new data structure called the packed compact trie (packed c-trie) which stores a set S of k strings of total length n in nlog σ+O(klog n) bits of space and supports fast pattern matching queries and updates, where σ is the alphabet size. Assume that α=logσn letters are packed in a single machine word on the standard word RAM model, and let f(k,n) denote the query and update times of the dynamic predecessor/successor data structure of our choice which stores k integers from universe [1,n] in O(klog n) bits of space. Then, given a string of length m, our packed c-tries support pattern matching queries and insert/delete operations in $O( rac{m}{alpha} f(k,n))$ worst-case time and in $O( rac{m}{alpha} + f(k,n))$ expected time. Our experiments show that our packed c-tries are faster than the standard compact tries (a.k.a. Patricia trees) on real data sets. We also discuss applications of our packed c-tries.

  • A Method for Evaluating Degradation Phenomenon of Electrical Contacts Using a Micro-Sliding Mechanism — Minimal Sliding Amplitudes against Input Waveforms (2) —

    Shin-ichi WADA  Koichiro SAWA  

     
    PAPER

      Vol:
    E100-C No:9
      Page(s):
    723-731

    Authors previously studied the degradation of electrical contacts under the condition of various external micro-oscillations. They also developed a micro-sliding mechanism (MSM2), which causes micro-sliding and is driven by a piezoelectric actuator and elastic hinges. Using the mechanism, experimental results were obtained on the minimal sliding amplitude (MSA) required to make the electrical resistance fluctuate under various conditions. In this paper, to develop a more realistic model of input waveform than the previous one, Ts/2 is set as the rising or falling time, Tc as the flat time, and τ/2 as the duration in a sliding period T (0.25 s) of the input waveform. Using the Duhamel's integral method and an optimization method, the physical parameters of natural angular frequency ω0 (12000 s-1), damping ratio ζ (0.05), and rising and falling time Ts (1.3 or 1.2 ms) are obtained. Using the parameters and the MSA, the total acceleration of the input TA (=f(t)) and the displacement of the output x(t) are also obtained using the Fourier series expansion method. The waveforms x(t) and the experimental results are similar to each other. If the effective mass m, which is defined as that of the movable parts in the MSM2, is 0.1 kg, each total force TF (=2mTA) is estimated from TA and m. By the TF, the cases for 0.3 N/pin as frictional force or in impulsive as input waveform are more serious than the others. It is essential for the safety and the confidence of electrical contacts to evaluate the input waveform and the frictional force. The ringing waveforms of the output displacements x(t) are calculated at smaller values of Ts (1.0, 0.5, and 0.0 ms) than the above values (1.3 or 1.2 ms). When Ts is slightly changed from 1.3 or 1.2 ms to 1.0 ms, the ringing amplitude is doubled. For the degradation of electrical contacts, it is essential that Ts is reduced in a rectangular and impulsive input. Finally, a very simple wear model comprising three stages (I, II, and III) is introduced in this paper. Because Ts is much shorter in a rectangular or impulsive input than in a sinusoidal input, it is considered that the former more easily causes wear than the latter owing to a larger frictional force. Taking the adhesive wear in Stages I and III into consideration, the wear is expected to be more severe in the case of small damped oscillations owing to the ringing phenomenon.

  • Constructing Subspace Membership Encryption through Inner Product Encryption

    Shuichi KATSUMATA  Noboru KUNIHIRO  

     
    PAPER

      Vol:
    E100-A No:9
      Page(s):
    1804-1815

    Subspace membership encryption (SME), a generalization of inner product encryption (IPE), was recently formalized by Boneh, Raghunathan, and Segev in Asiacrypt 2013. The main motivation for SME was that traditional predicate encryptions did not yield function privacy, a security notion introduced by Boneh et al. in Crypto 2013 that captures the privacy of the predicate associated to the secret key. Although they gave a generic construction of SME based on any IPE, we show that their construction of SME for small attribute space was incorrect and provide an attack that breaks the attribute hiding security, a baseline security notion for predicate encryptions that captures the privacy of the attribute associated with the ciphertext. Then, we propose a generalized construction of SME and prove that the attribute hiding security can not be achieved even in the newly defined setting. Finally, we further extend our generalized construction of SME and propose a SME that achieves the attribute hiding property even when the attribute space is small. In exchange our proposed scheme does not yield function privacy and the construction is rather inefficient. Although we did not succeed in constructing a SME both yielding function privacy and attribute hiding security, ours is the first attribute hiding SME scheme whose attribute space is polynomial in the security parameter, and we formalized a richer framework for constructing SMEs and discovered a trade-off like relationship between the two security notions.

1441-1460hit(8239hit)