The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] CTI(8214hit)

1481-1500hit(8214hit)

  • Performance Evaluation of Software-Based Error Detection Mechanisms for Supply Noise Induced Timing Errors

    Yutaka MASUDA  Takao ONOYE  Masanori HASHIMOTO  

     
    PAPER

      Vol:
    E100-A No:7
      Page(s):
    1452-1463

    Software-based error detection techniques, which includes error detection mechanism (EDM) transformation, are used for error localization in post-silicon validation. This paper evaluates the performance of EDM for timing error localization with a noise-aware logic simulator and 65-nm test chips assuming the following two EDM usage scenarios; (1) localizing a timing error occurred in the original program, and (2) localizing as many potential timing errors as possible. Simulation results show that the EDM transformation customized for quick error detection cannot locate electrical timing errors in the original program in the first scenario, but it detects 86% of non-masked errors potential bugs in the second scenario, which mean the EDM performance of detecting electrical timing errors affecting execution results is high. Hardware measurement results show that the EDM detects 25% of original timing errors and 56% of non-masked errors. Here, these hardware measurement results are not consistent with the simulation results. To investigate the reason, we focus on the following two differences between hardware and simulation; (1) design of power distribution network, and (2) definition of timing error occurrence frequency. We update the simulation setup for filling the difference and re-execute the simulation. We confirm that the simulation and the chip measurement results are consistent.

  • A Spectrum-Sharing Approach in Heterogeneous Networks Based on Multi-Objective Optimization

    Runze WU  Jiajia ZHU  Liangrui TANG  Chen XU  Xin WU  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2016/12/27
      Vol:
    E100-B No:7
      Page(s):
    1145-1151

    Deploying low power nodes (LPNs), which reuse the spectrum licensed to a macrocell network, is considered to be a promising way to significantly boost network capacity. Due to the spectrum-sharing, the deployment of LPNs could trigger the severe problem of interference including intra-tier interference among dense LPNs and inter-tier interference between LPNs and the macro base station (MBS), which influences the system performance strongly. In this paper, we investigate a spectrum-sharing approach in the downlink for two-tier networks, which consists of small cells (SCs) with several LPNs and a macrocell with a MBS, aiming to mitigate the interference and improve the capacity of SCs. The spectrum-sharing approach is described as a multi-objective optimization problem. The problem is solved by the nondominated sorting genetic algorithm version II (NSGA-II), and the simulations show that the proposed spectrum-sharing approach is superior to the existing one.

  • Enhancing Underwater Color Images via Optical Imaging Model and Non-Local Means Denoising

    Dubok PARK  David K. HAN  Hanseok KO  

     
    PAPER-Image Processing and Video Processing

      Pubricized:
    2017/04/07
      Vol:
    E100-D No:7
      Page(s):
    1475-1483

    This paper proposes a novel framework for enhancing underwater images captured by optical imaging model and non-local means denoising. The proposed approach adjusts the color balance using biasness correction and the average luminance. Scene visibility is then enhanced based on an underwater optical imaging model. The increase in noise in the enhanced images is alleviated by non-local means (NLM) denoising. The final enhanced images are characterized by improved visibility while retaining color fidelity and reducing noise. The proposed method does not require specialized hardware nor prior knowledge of the underwater environment.

  • Small Group Detection in Crowds using Interaction Information

    Kai TAN  Linfeng XU  Yinan LIU  Bing LUO  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2017/04/17
      Vol:
    E100-D No:7
      Page(s):
    1542-1545

    Small group detection is still a challenging problem in crowds. Traditional methods use the trajectory information to measure pairwise similarity which is sensitive to the variations of group density and interactive behaviors. In this paper, we propose two types of information by simultaneously incorporating trajectory and interaction information, to detect small groups in crowds. The trajectory information is used to describe the spatial proximity and motion information between trajectories. The interaction information is designed to capture the interactive behaviors from video sequence. To achieve this goal, two classifiers are exploited to discover interpersonal relations. The assumption is that interactive behaviors often occur in group members while there are no interactions between individuals in different groups. The pairwise similarity is enhanced by combining the two types of information. Finally, an efficient clustering approach is used to achieve small group detection. Experiments show that the significant improvement is gained by exploiting the interaction information and the proposed method outperforms the state-of-the-art methods.

  • Reordering-Based Test Pattern Reduction Considering Critical Area-Aware Weighted Fault Coverage

    Masayuki ARAI  Kazuhiko IWASAKI  

     
    PAPER

      Vol:
    E100-A No:7
      Page(s):
    1488-1495

    Shrinking feature sizes and higher levels of integration in semiconductor device manufacturing technologies are increasingly causing the gap between defect levels estimated in the design stage and reported ones for fabricated devices. In this paper, we propose a unified weighted fault coverage approach that includes both bridge and open faults, considering the critical area as the incident rate of each fault. We then propose a test pattern reordering scheme that incorporates our weighted fault coverage with an aim to reduce test costs. Here we apply a greedy algorithm to reorder test patterns generated by the bridge and stuck-at automatic test pattern generator (ATPG), evaluating the relationship between the number of patterns and the weighted fault coverage. Experimental results show that by applying this reordering scheme, the number of test patterns was reduced, on average, by approximately 50%. Our results also indicate that relaxing coverage constraints can drastically reduce test pattern set sizes to a level comparable to traditional 100% coverage stuck-at pattern sets, while targeting the majority of bridge faults and keeping the defect level to no more than 10 defective parts per milion (DPPM) with a 99% manufacturing yield.

  • A New Bayesian Network Structure Learning Algorithm Mechanism Based on the Decomposability of Scoring Functions

    Guoliang LI  Lining XING  Zhongshan ZHANG  Yingwu CHEN  

     
    PAPER-Graphs and Networks

      Vol:
    E100-A No:7
      Page(s):
    1541-1551

    Bayesian networks are a powerful approach for representation and reasoning under conditions of uncertainty. Of the many good algorithms for learning Bayesian networks from data, the bio-inspired search algorithm is one of the most effective. In this paper, we propose a hybrid mutual information-modified binary particle swarm optimization (MI-MBPSO) algorithm. This technique first constructs a network based on MI to improve the quality of the initial population, and then uses the decomposability of the scoring function to modify the BPSO algorithm. Experimental results show that, the proposed hybrid algorithm outperforms various other state-of-the-art structure learning algorithms.

  • Reduction of Quantum Cost by Making Temporary Changes to the Function

    Nurul AIN BINTI ADNAN  Shigeru YAMASHITA  Alan MISHCHENKO  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2017/03/23
      Vol:
    E100-D No:7
      Page(s):
    1393-1402

    This paper presents a technique to reduce the quantum cost by making temporary changes to the functionality of a given Boolean function. This technique is one of the very few known methods based on manipulating Exclusive-or Sum-Of-Products (ESOP) expressions to reduce the quantum cost of the corresponding circuit. The idea involves adding Mixed Polarity Multiple-Control Toffoli (MPMCT) gates to temporarily change the functionality of the given function, so that the modified function has a smaller quantum cost. To compensate for the temporary change, additional gates are inserted into the circuit. The proposed method finds a small ESOP expression for the given function, and then finds a good pair of product terms in the ESOP expression so that the quantum cost can be reduced by applying the transformation. The proposed approach is likely to produce a better quantum cost reduction than the existing methods, and indeed experimental results confirm this expectation.

  • Fusion Center Controlled MAC Protocol for Physical Wireless Parameter Conversion Sensor Networks (PHY-C SN)

    Koji KAKINUMA  Mai OHTA  Osamu TAKYU  Takeo FUJII  

     
    PAPER-Network

      Pubricized:
    2017/01/12
      Vol:
    E100-B No:7
      Page(s):
    1105-1114

    In this paper, a novel fusion center controlled media access control (MAC) protocol for physical wireless parameter conversion sensor networks (PHY-C SN), and a transmission power design for each sensor node are proposed. In PHY-C SN, the sensing information is converted to corresponding subcarrier number of orthogonal frequency division multiplexing (OFDM) signals, and all sensor nodes can send sensing information simultaneously. In most wireless sensor network standards, each sensor node detects the surrounding wireless signal through carrier sense. However, sensor nodes cannot send signals simultaneously if carrier sense is applied in PHY-C SN. Therefore, a protocol for PHY-C SN is devised. In the proposed protocol, the fusion center detects the surrounding wireless environment by carrier sense and requests sensing information transmission toward sensor nodes if no other wireless systems are detected. Once the sensor nodes receive the request signal, they transmit sensing information to the fusion center. Further, to avoid harmful interference with surrounding wireless systems, the transmission power of each sensor is designed to suit the considering communication range and avoid interference toward other wireless systems. The effectiveness of the proposed protocol is evaluated by computer simulation. The parameters for collection like the number of collecting sensor nodes and the radius of the collection area are also examined when determining the transmission power of sensor nodes. Results show that highly efficient information collection with reducing interference both from and towards surrounding wireless systems can be implemented with PHY-C SN.

  • Latency-Aware Selection of Check Variables for Soft-Error Tolerant Datapath Synthesis

    Junghoon OH  Mineo KANEKO  

     
    LETTER

      Vol:
    E100-A No:7
      Page(s):
    1506-1510

    This letter proposes a heuristic algorithm to select check variables, which are points of comparison for error detection, for soft-error tolerant datapaths. Our soft-error tolerance scheme is based on check-and-retry computation and an efficient resource management named speculative resource sharing (SRS). Starting with the smallest set of check variables, the proposed algorithm repeats to add new check variable one by one incrementally and find the minimum latency solution among the series of generated solutions. During the process, each new check variable is selected so that the opportunity of SRS is enlarged. Experimental results show that improvements in latency are achieved compared with the choice of the smallest set of check variables.

  • Feature Detection Scheme Using Cyclic Prefix (CP) in OFDM; Analytical Method for Basic Performance Characteristics and Applications to Mobile Communication Systems

    Kanshiro KASHIKI  Tomoki SADA  Akira YAMAGUCHI  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2017/01/12
      Vol:
    E100-B No:7
      Page(s):
    1064-1074

    This paper presents study results regarding the analytical method for performance characteristics and application scheme, which cover a feature detection scheme using a Cyclic Prefix (CP) that is attached to an OFDM signal. The detection scheme is especially important when used as a sensing technology in advanced systems such as Device-to-Device (D-to-D) or Internet of Things (IoT). Herein, we present several basic performance characteristics of the signal processing involved in feature detection, namely, the Output S/N (Signal-to-Noise power ratio) and probability density functions of the OFDM signal and the noise measured at the output of the feature detector. The Output S/Nis described by an analytical expression and is also examined by conducting a software simulation. An analytical approach is investigated by modeling the spectral density of the OFDM signal and input noise and by executing the mathematical operations such as convolutional integration on the combination of OFDM signal and noise. The analytical results coincide closely with the simulation results. As for the applications to mobile communication system, some methods of the feature detection schemes are addressed. These are an estimation method for the Input C/N (Carrier-to-Noise power ratio) and a system discrimination scheme, especially under the assumption that two OFDM systems using different CP lengths are simultaneously operated in the same frequency. Furthermore, under the condition that two OFDM signals are transmitted in an asynchronous manner, a scheme to estimate their timing offset and signal power ratio is also described.

  • Design of an Application Specific Instruction Set Processor for Real-Time Object Detection Using AdaBoost Algorithm

    Shanlin XIAO  Tsuyoshi ISSHIKI  Dongju LI  Hiroaki KUNIEDA  

     
    PAPER

      Vol:
    E100-A No:7
      Page(s):
    1384-1395

    Object detection is at the heart of nearly all the computer vision systems. Standard off-the-shelf embedded processors are hard to meet the trade-offs among performance, power consumption and flexibility required by object detection applications. Therefore, this paper presents an Application Specific Instruction set Processor (ASIP) for object detection using AdaBoost-based learning algorithm with Haar-like features as weak classifiers. Algorithm optimizations are employed to reduce memory bandwidth requirements without losing reliability. In the proposed ASIP, Single Instruction Multiple Data (SIMD) architecture is adopted for fully exploiting data-level parallelism inherent to the target algorithm. With adding pipeline stages, application-specific hardware components and custom instructions, the AdaBoost algorithm is accelerated by a factor of 13.7x compared to the optimized pure software implementation. Compared with ARM946 and TMS320C64+, our ASIP shows 32x and 7x better throughput, 10x and 224x better area efficiency, 6.8x and 18.8x better power efficiency, respectively. Furthermore, compared to hard-wired designs, evaluation results show an advantage of the proposed architecture in terms of chip area efficiency while maintain a reliable performance and achieve real-time object detection at 32fps on VGA video.

  • Robust Widely Linear Beamforming via an IAA Method for the Augmented IPNCM Reconstruction

    Jiangbo LIU  Guan GUI  Wei XIE  Xunchao CONG  Qun WAN  Fumiyuki ADACHI  

     
    LETTER-Digital Signal Processing

      Vol:
    E100-A No:7
      Page(s):
    1562-1566

    Based on the reconstruction of the augmented interference-plus-noise (IPN) covariance matrix (CM) and the estimation of the desired signal's extended steering vector (SV), we propose a novel robust widely linear (WL) beamforming algorithm. Firstly, an extension of the iterative adaptive approach (IAA) algorithm is employed to acquire the spatial spectrum. Secondly, the IAA spatial spectrum is adopted to reconstruct the augmented signal-plus-noise (SPN) CM and the augmented IPNCM. Thirdly, the extended SV of the desired signal is estimated by using the iterative robust Capon beamformer with adaptive uncertainty level (AU-IRCB). Compared with several representative robust WL beamforming algorithms, simulation results are provided to confirm that the proposed method can achieve a better performance and has a much lower complexity.

  • Double Directional Millimeter Wave Propagation Channel Measurement and Polarimetric Cluster Properties in Outdoor Urban Pico-cell Environment

    Karma WANGCHUK  Kento UMEKI  Tatsuki IWATA  Panawit HANPINITSAK  Minseok KIM  Kentaro SAITO  Jun-ichi TAKADA  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2017/01/16
      Vol:
    E100-B No:7
      Page(s):
    1133-1144

    To use millimeter wave bands in future cellular and outdoor wireless networks, understanding the multipath cluster characteristics such as delay and angular spread for different polarization is very important besides knowing the path loss and other large scale propagation parameters. This paper presents result from analysis of wide-band full polarimetric double directional channel measurement at the millimeter wave band in a typical urban pico-cell environment. Only limited number of multipath clusters with gains ranging from -8dB to -26.8dB below the free space path loss and mainly due to single reflection, double reflection and diffraction, under both line of sight (LOS) and obstructed LOS conditions are seen. The cluster gain and scattering intensity showed strong dependence on polarization. The scattering intensities for ϑ-ϑ polarization were seen to be stronger compared to ϕ-ϕ polarization and on average 6.1dB, 5.6dB and 4.5dB higher for clusters due to single reflection, double reflection and scattering respectively. In each cluster, the paths are highly concentrated in the delay domain with delay spread comparable to the delay resolution of 2.5ns irrespective of polarization. Unlike the scattering intensity, the angular spread of paths in each cluster did not show dependence on polarization. On the base station side, average angular spread in azimuth and in elevation were almost similar with ≤3.3° spread in azimuth and ≤3.2° spread in elevation for ϑ-ϑ polarization. These spreads were slightly smaller than those observed for ϕ-ϕ polarization. On the mobile station side the angular spread in azimuth was much higher compared to the base station side. On average, azimuth angular spread of ≤11.4° and elevation angular spread of ≤5° are observed for ϑ-ϑ polarization. These spreads were slightly larger than in ϕ-ϕ polarization. Knowing these characteristics will be vital for more accurate modeling of the channel, and in system and antenna design.

  • A Floorplan Aware High-Level Synthesis Algorithm with Body Biasing for Delay Variation Compensation

    Koki IGAWA  Masao YANAGISAWA  Nozomu TOGAWA  

     
    PAPER

      Vol:
    E100-A No:7
      Page(s):
    1439-1451

    In this paper, we propose a floorplan aware high-level synthesis algorithm with body biasing for delay variation compensation, which minimizes the average leakage energy of manufactured chips. In order to realize floorplan-aware high-level synthesis, we utilize huddle-based distributed register architecture (HDR architecture). HDR architecture divides the chip area into small partitions called a huddle and we can control a body bias voltage for every huddle. During high-level synthesis, we iteratively obtain expected leakage energy for every huddle when applying a body bias voltage. A huddle with smaller expected leakage energy contributes to reducing expected leakage energy of the entire circuit more but can increase the latency. We assign control-data flow graph (CDFG) nodes in non-critical paths to the huddles with larger expected leakage energy and those in critical paths to the huddles with smaller expected leakage energy. We expect to minimize the entire leakage energy in a manufactured chip without increasing its latency. Experimental results show that our algorithm reduces the average leakage energy by up to 39.7% without latency and yield degradation compared with typical-case design with body biasing.

  • Zero-Shot Embedding for Unseen Entities in Knowledge Graph

    Yu ZHAO  Sheng GAO  Patrick GALLINARI  Jun GUO  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2017/04/10
      Vol:
    E100-D No:7
      Page(s):
    1440-1447

    Knowledge graph (KG) embedding aims at learning the latent semantic representations for entities and relations. However, most existing approaches can only be applied to KG completion, so cannot identify relations including unseen entities (or Out-of-KG entities). In this paper, motivated by the zero-shot learning, we propose a novel model, namely JointE, jointly learning KG and entity descriptions embedding, to extend KG by adding new relations with Out-of-KG entities. The JointE model is evaluated on entity prediction for zero-shot embedding. Empirical comparisons on benchmark datasets show that the proposed JointE model outperforms state-of-the-art approaches. The source code of JointE is available at https://github.com/yzur/JointE.

  • Verifying Scenarios of Proximity-Based Federations among Smart Objects through Model Checking and Its Advantages

    Reona MINODA  Shin-ichi MINATO  

     
    PAPER-Formal techniques

      Pubricized:
    2017/03/07
      Vol:
    E100-D No:6
      Page(s):
    1172-1181

    This paper proposes a formal approach of verifying ubiquitous computing application scenarios. Ubiquitous computing application scenarios assume that there are a lot of devices and physical things with computation and communication capabilities, which are called smart objects, and these are interacted with each other. Each of these interactions among smart objects is called “federation”, and these federations form a ubiquitous computing application scenario. Previously, Yuzuru Tanaka proposed “a proximity-based federation model among smart objects”, which is intended for liberating ubiquitous computing from stereotyped application scenarios. However, there are still challenges to establish the verification method of this model. This paper proposes a verification method of this model through model checking. Model checking is one of the most popular formal verification approach and it is often used in various fields of industry. Model checking is conducted using a Kripke structure which is a formal state transition model. We introduce a context catalytic reaction network (CCRN) to handle this federation model as a formal state transition model. We also give an algorithm to transform a CCRN into a Kripke structure and we conduct a case study of ubiquitous computing scenario verification, using this algorithm and the model checking. Finally, we discuss the advantages of our formal approach by showing the difficulties of our target problem experimentally.

  • Effective Indoor Localization and 3D Point Registration Based on Plane Matching Initialization

    Dongchen ZHU  Ziran XING  Jiamao LI  Yuzhang GU  Xiaolin ZHANG  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2017/03/08
      Vol:
    E100-D No:6
      Page(s):
    1316-1324

    Effective indoor localization is the essential part of VR (Virtual Reality) and AR (Augmented Reality) technologies. Tracking the RGB-D camera becomes more popular since it can capture the relatively accurate color and depth information at the same time. With the recovered colorful point cloud, the traditional ICP (Iterative Closest Point) algorithm can be used to estimate the camera poses and reconstruct the scene. However, many works focus on improving ICP for processing the general scene and ignore the practical significance of effective initialization under the specific conditions, such as the indoor scene for VR or AR. In this work, a novel indoor prior based initialization method has been proposed to estimate the initial motion for ICP algorithm. We introduce the generation process of colorful point cloud at first, and then introduce the camera rotation initialization method for ICP in detail. A fast region growing based method is used to detect planes in an indoor frame. After we merge those small planes and pick up the two biggest unparallel ones in each frame, a novel rotation estimation method can be employed for the adjacent frames. We evaluate the effectiveness of our method by means of qualitative observation of reconstruction result because of the lack of the ground truth. Experimental results show that our method can not only fix the failure cases, but also can reduce the ICP iteration steps significantly.

  • A Novel Embedding Model for Relation Prediction in Recommendation Systems

    Yu ZHAO  Sheng GAO  Patrick GALLINARI  Jun GUO  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2017/03/14
      Vol:
    E100-D No:6
      Page(s):
    1242-1250

    It inevitably comes out information overload problem with the increasing available data on e-commence websites. Most existing approaches have been proposed to recommend the users personal significant and interesting items on e-commence websites, by estimating unknown rating which the user may rate the unrated item, i.e., rating prediction. However, the existing approaches are unable to perform user prediction and item prediction, since they just treat the ratings as real numbers and learn nothing about the ratings' embeddings in the training process. In this paper, motivated by relation prediction in multi-relational graph, we propose a novel embedding model, namely RPEM, to solve the problem including the tasks of rating prediction, user prediction and item prediction simultaneously for recommendation systems, by learning the latent semantic representation of the users, items and ratings. In addition, we apply the proposed model to cross-domain recommendation, which is able to realize recommendation generation in multiple domains. Empirical comparison on several real datasets validates the effectiveness of the proposed model. The data is available at https://github.com/yuzhaour/da.

  • Experimental Study on CDMA GaAs HBT MMIC Power Amplifier Layout Design for Reducing Turn-On Delay in Transient Response

    Kazuya YAMAMOTO  Miyo MIYASHITA  Takayuki MATSUZUKA  Tomoyuki ASADA  Kazunobu FUJII  Satoshi SUZUKI  Teruyuki SHIMURA  Hiroaki SEKI  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E100-C No:6
      Page(s):
    618-631

    This paper describes, for the first time, an experimental study on the layout design considerations of GaAs HBT MMIC switchable-amplifier-chain-based power amplifiers (SWPAs) for CDMA handsets. The transient response of the quiescent current and output power (Pout) in GaAs HBT power amplifiers that consist of a main chain and a sub-chain is often affected by a thermal coupling between power stages and their bias circuits in the same chain or a thermal coupling between power stages and/or their bias circuits in different chains. In particular, excessively strong thermal coupling inside the MMIC SWPA causes failure in 3GPP-compliant inner loop power control tests. An experimental study reveals that both the preheating in the main/sub-chains and appropriate thermal coupling inside the main chain are very effective in reducing the turn-on delay for the two-parallel-amplifier-chain topology; for example, i) the sub-power stage is arranged near the main power stage, ii) the sub-driver stage is placed near the main driver stage and iii) the main driver bias circuit is placed near the main power stage and the sub-power stage. The SWPA operating in Band 9 (1749.9 to 1784.9 MHz), which was designed and fabricated from the foregoing considerations, shows a remarkable improvement in the Pout turn-on delay: a reduced power level error of 0.74 dB from turn-off to turn-on in the sub-amplifier chain and a reduced power level error of over 0.30 dB from turn-off to turn-on in the main amplifier chain. The main RF power measurements conducted with a 3.4-V supply voltage and a Band 9 WCDMA HSDPA modulated signal are as follows. The SWPA delivers a Pout of 28.5 dBm, a power gain (Gp) of 28 dB, and a PAE of 39% while restricting the ACLR1 to less than -40 dBc in the main amplifier chain. In the sub-amplifier chain, 17 dBm of Pout, 23.5 dB of Gp, and 27% of PAE are obtained at the same ACLR1 level.

  • A Shadow Cursor for Calibrating Screen Coordinates of Tabletop Displays and Its Evaluation

    Makio ISHIHARA  Yukio ISHIHARA  

     
    PAPER-Human-computer Interaction

      Pubricized:
    2017/03/16
      Vol:
    E100-D No:6
      Page(s):
    1271-1279

    This paper discusses the use of a common computer mouse as a pointing interface for tabletop displays. In the use of a common computer mouse for tabletop displays, there might be an angular distance between the screen coordinates and the mouse control coordinates. To align those coordinates, this paper introduces a screen coordinates calibration technique using a shadow cursor. A shadow cursor is the basic idea of manipulating a mouse cursor without any visual feedbacks. The shadow cursor plays an important role in obtaining the angular distance between the two coordinates. It enables the user to perform a simple mouse manipulation so that screen coordinates calibration will be completed in less than a second.

1481-1500hit(8214hit)