The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] DR(1315hit)

261-280hit(1315hit)

  • Measurement of Wireless LAN Characteristics in Sewer Pipes for Sewer Inspection Systems Using Drifting Wireless Sensor Nodes

    Taiki NAGASHIMA  Yudai TANAKA  Susumu ISHIHARA  

     
    PAPER

      Vol:
    E99-B No:9
      Page(s):
    1989-1997

    Deterioration of sewer pipes is one of very important problems in Japan. Sewer inspections have been carried out mainly by visual check or wired remote robots with a camera. However, such inspection schemes involve high labor and/or monetary cost. Sewer inspection with boat-type video cameras or unwired robots takes a long time to check the result of the inspection because video data are obtained after the equipment is retrieved from the pipe. To realize low cost, safe and quick inspection of sewer pipes, we have proposed a sewer inspection system using drifting wireless sensor nodes. Water, soil, and the narrow space in the pipe make the long-range and high throughput wireless radio communication difficult. Therefore, we have to identify suitable radio frequency and antenna configuration based on wireless communication characteristics in sewer pipes. If the frequency is higher, the Fresnel zone, the needed space for the line of sight is small, but the path loss in free space is large. On the other hand, if the frequency is lower, the size of the Fresnel zone is large, but the path loss in free space is small. We conducted wireless communication experiments using 920MHz, 2.4GHz, and 5GHz band off-the-shelf devices in an experimental underground pipe. The measurement results show that the wireless communication range of 5GHz (IEEE 802.11a) is over 8m in a 200mm-diameter pipe and is longer than 920MHz (ARIB STD-T108), 2.4GHz (IEEE 802.11g, IEEE 802.15.4) band at their maximum transmission power. In addition, we confirmed that devices that use IEEE 802.11a and 54Mbps bit rate can transmit about 43MB data while they are in the communication range of an AP and drift at 1m/s in a 200mm-diameter pipe, and it is bigger than one of devices that use other bit rate.

  • 3-Port MIMO DRAs for 2.4GHz WLAN Communications

    Katsunori ISHIMIYA  Chi-Yuk CHIU  Zhinong YING  Jun-ichi TAKADA  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2016/04/04
      Vol:
    E99-B No:9
      Page(s):
    2047-2054

    A compact multiple-input multiple-output (MIMO) dielectric resonator antenna (DRA) was proposed and studied. The DRA consists of three antenna ports. The antennas operate at 2.4GHz, where one of the antenna ports was placed at the center and resonates in the monopole mode, and the two other ports were located at the sides and resonate in the TEy111 mode. Both simulation and measurements were carried out, and reasonably good agreement was obtained. In addition, a study for miniaturization with different permittivities for the DRA and a comparison of the throughput with the reference antennas of a commercial wireless LAN router were performed. Our proposed MIMO DRA gave similar performance as that of the reference antennas but was more compact in size.

  • Inishing: A UI Phishing Attack to Exploit the Vulnerability of Inotify in Android Smartphones

    Woo Hyun AHN  Sanghyeon PARK  Jaewon OH  Seung-Ho LIM  

     
    LETTER-Dependable Computing

      Pubricized:
    2016/03/07
      Vol:
    E99-D No:9
      Page(s):
    2404-2409

    In Android OS, we discover that a notification service called inotify is a new side-channel allowing malware to identify file accesses associated with the display of a security-relevant UI screen. This paper proposes a phishing attack that detects victim UI screens by their file accesses in applications and steals private information.

  • A Virtualization-Based Hybrid Storage System for a Map-Reduce Framework

    Aseffa DEREJE TEKILU  Chin-Hsien WU  

     
    PAPER-Software System

      Pubricized:
    2016/05/25
      Vol:
    E99-D No:9
      Page(s):
    2248-2258

    A map-reduce framework is popular for big data analysis. In the typical map-reduce framework, both master node and worker nodes can use hard-disk drives (HDDs) as local disks for the map-reduce computation. However, because of the inherit mechanical problems of HDDs, the I/O performance is a bottleneck for the map-reduce framework when I/O-intensive applications (e.g., sorting) are performed. Replacing HDDs with solid-state drives (SSDs) is not economical, although SSDs have better performance than HDDs. In this paper, we propose a virtualization-based hybrid storage system for the map-reduce framework. The objective of the paper is to combine the advantages of the fast access property of SSDs and the low cost of HDDs by realizing an economical design and improving I/O performance of a map-reduce framework in a virtualization environment. We propose three storage combinations: SSD-based, HDD-based, and a hybrid of SSD-based and HDD-based storage systems which balances speed, capacity, and lifetime. According to experiments, the hybrid of SSD-based and HDD-based storage systems offers superior performance and economy.

  • A 50-Gb/s Optical Transmitter Based on a 25-Gb/s-Class DFB-LD and a 0.18-µm SiGe BiCMOS LD Driver

    Takashi TAKEMOTO  Yasunobu MATSUOKA  Hiroki YAMASHITA  Takahiro NAKAMURA  Yong LEE  Hideo ARIMOTO  Tatemi IDO  

     
    PAPER-Optoelectronics

      Vol:
    E99-C No:9
      Page(s):
    1039-1047

    A 50-Gb/s optical transmitter, consisting of a 25-Gb/s-class lens-integrated DFB-LD (with -3-dB bandwidth of 20GHz) and a LD-driver chip based on 0.18-µm SiGe BiCMOS technology for inter and intra-rack transmissions, was developed and tested. The DFB-LD and LD driver chip are flip-chip mounted on an alumina ceramic package. To suppress inter-symbol interference due to a shortage of the DFB-LD bandwidth and signal reflection between the DFB-LD and the package, the LD driver includes a two-tap pre-emphasis circuit and a high-speed termination circuit. Operating at a data rate of 50Gb/s, the optical transmitter enhances LD bandwidth and demonstrated an eye opening with jitter margin of 0.23UI. Power efficiency of the optical transmitter at a data rate of 50Gb/s is 16.2mW/Gb/s.

  • The Constructions of Mismatched Filtering of Periodic Quadriphase Sequences with Even Length

    Xiuping PENG  Chengqian XU  Jiadong REN  Kai LIU  

     
    LETTER-Coding Theory

      Vol:
    E99-A No:9
      Page(s):
    1735-1739

    Quadriphase sequences with good correlation properties are required in higher order digital modulation schemes, e.g., for timing measurements, channel estimation or synchronization. In this letter, based on interleaving technique and pairs of mismatched binary sequences with perfect cross-correlation function (PCCF), two new methods for constructing quadriphase sequences with mismatched filtering which exist for even length N ≡ 2(mod4) are presented. The resultant perfect mismatched quadriphase sequences have high energy efficiencies. Compared with the existing methods, the new methods have flexible parameters and can give cyclically distinct perfect mismatched quadriphase sequences.

  • Three Gait Oscillations Switchable by a Single Parameter on Hard-Wired Central Pattern Generator Hardware Network

    Akihiro MARUYAMA  Kentaro TANI  Shigehito TANAHASHI  Atsuhiko IIJIMA  Yoshinobu MAEDA  

     
    PAPER-Neural Networks and Bioengineering

      Vol:
    E99-A No:8
      Page(s):
    1600-1608

    We present a hard-wired central patter generator (CPG) hardware network that reproduces the periodic oscillations of the typical gaits, namely, walk, trot, and bound. Notably, the three gaits are generated by a single parameter, i.e., the battery voltage EMLR, which acts like a signal from the midbrain's locomotor region. One CPG is composed of two types of hardware neuron models, reproducing neuronal bursting and beating (action potentials), and three types of hardware synapse models: a gap junction, excitatory and inhibitory synapses. When four hardware CPG models were coupled into a Z4 symmetry network in a previous study [22], two neuronal oscillation patterns corresponding to four-legged animal gaits (walk and bound) were generated by manipulating a single control parameter. However, no more than two neuronal oscillation patterns have been stably observed on a hard-wired four-CPG hardware network. In the current study, we indicate that three neuronal oscillation patterns (walk, trot, and bound) can be generated by manipulating a single control parameter on a hard-wired eight-CPG (Z4 × Z2 symmetry) hardware network.

  • Design and Implementation of ETSI-Standard Reconfigurable Mobile Device for Heterogeneous Network

    Yong JIN  Chiyoung AHN  Seungwon CHOI  Markus MUECK  Vladimir IVANOV  Tapan K. SARKAR  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E99-B No:8
      Page(s):
    1874-1883

    In heterogeneous networks, network selection is an important task for reconfigurable mobile devices (MDs). In the reconfigurable MD architecture that has been standardized by the European Telecommunications Standards Institute (ETSI), the network selection functionality is handled by a software component called Mobility Policy Manager (MPM). In this paper, we present an implementation of the MPM whereby a reconfigurable MD conforming to the ETSI standard can select the most appropriate radio access network (RAN) to use. We implemented a reconfigurable MD test-bed compliant with the ETSI standard, and show that the network selection driven by the MPM enhances the throughput of the receiving MD by about 26% compared to the arbitrary network selection provided by a conventional reconfigurable MD without the functionality of MPM, verifying the functionality of the MPM.

  • Proposal of a Simple Ultra-Low Contention CD ROADM

    Ayako IWAKI  Akio SAHARA  Mitsunori FUKUTOKU  

     
    PAPER-Fiber-Optic Transmission for Communications

      Vol:
    E99-B No:8
      Page(s):
    1772-1779

    We propose a simple configuration for colorless and directionless (CD) reconfigurable optical add/drop multiplexers that enables ultra-low contention add/drop operation to be achieved. In the configuration, we apply a combination of multiple small-port-count CD add/drop banks (CD banks) and round-robin CD bank assignment. Evaluation results show that the proposed configuration can substantially reduce intra-node contention rate, which is less than 0.1%. We also find that the proposed configuration can improve the utilization efficiency of wavelength resources and transponders. We discuss the mechanism of how the proposed configuration reduces intra-node contention by analyzing the status of wavelength assignments in direction ports and CD banks.

  • Reducing Aging Effects on Ternary CAM

    Ing-Chao LIN  Yen-Han LEE  Sheng-Wei WANG  

     
    PAPER-Integrated Electronics

      Vol:
    E99-C No:7
      Page(s):
    878-891

    Ternary content addressable memory (TCAM), which can store 0, 1, or X in its cells, is widely used to store routing tables in network routers. Negative bias temperature instability (NBTI) and positive bias temperature instability (PBTI), which increase Vth and degrade transistor switching speed, have become major reliability challenges. This study analyzes the signal probability of routing tables. The results show that many cells retain static stress and suffer significant degradation caused by NBTI and PBTI effects. The bit flipping technique is improved and proactive power gating recovery is proposed to mitigate NBTI and PBTI effects. In order to maintain the functionality of TCAM after bit flipping, a novel TCAM cell design is proposed. Simulation results show that compared to the original architecture, the bit flipping technique improves read static noise margin (SNM) for data and mask cells by 16.84% and 29.94%, respectively, and reduces search time degradation by 12.95%. The power gating technique improves read SNM for data and mask cells by 12.31% and 20.92%, respectively, and reduces search time degradation by 17.57%. When both techniques are used, read SNM for data and mask cells is improved by 17.74% and 30.53%, respectively, and search time degradation is reduced by 21.01%.

  • Wide-Range and Fast-Tracking Non-Data-Aided Frequency Offset Estimator for QAM Optical Coherent Receivers

    Tadao NAKAGAWA  Takayuki KOBAYASHI  Koichi ISHIHARA  Yutaka MIYAMOTO  

     
    PAPER-Fiber-Optic Transmission for Communications

      Vol:
    E99-B No:7
      Page(s):
    1416-1425

    This paper describes a blind frequency offset estimator (FOE) with wide frequency range for coherent quadrature amplitude modulation (QAM) receivers. The FOE combines a spectrum-based frequency offset estimation algorithm as a coarse estimator with a frequency offset estimation algorithm using the periodogram as a fine estimator. To establish our design methodology, each block of the FOE is rigorously analyzed by using formulas and the minimum fast Fourier transform (FFT) size that generates a frequency spectrum for both the coarse and fine estimators is determined. The coarse estimator's main feature is that all estimation processes are carried out in the frequency domain, which yields convergence more than five times faster than that of conventional estimators. The estimation frequency range of the entire FOE is more than 1.8 times wider than that of conventional FOEs. Experiments on coherent optical 64-ary QAM (64-QAM) reveal that frequency offset estimation can be achieved under a frequency offset value greater than the highest value of the conventional estimation range.

  • Multiple k-Nearest Neighbor Classifier and Its Application to Tissue Characterization of Coronary Plaque

    Eiji UCHINO  Ryosuke KUBOTA  Takanori KOGA  Hideaki MISAWA  Noriaki SUETAKE  

     
    PAPER-Biological Engineering

      Pubricized:
    2016/04/15
      Vol:
    E99-D No:7
      Page(s):
    1920-1927

    In this paper we propose a novel classification method for the multiple k-nearest neighbor (MkNN) classifier and show its practical application to medical image processing. The proposed method performs fine classification when a pair of the spatial coordinate of the observation data in the observation space and its corresponding feature vector in the feature space is provided. The proposed MkNN classifier uses the continuity of the distribution of features of the same class not only in the feature space but also in the observation space. In order to validate the performance of the present method, it is applied to the tissue characterization problem of coronary plaque. The quantitative and qualitative validity of the proposed MkNN classifier have been confirmed by actual experiments.

  • Quadratic Compressed Sensing Based SAR Imaging Algorithm for Phase Noise Mitigation

    Xunchao CONG  Guan GUI  Keyu LONG  Jiangbo LIU  Longfei TAN  Xiao LI  Qun WAN  

     
    LETTER-Digital Signal Processing

      Vol:
    E99-A No:6
      Page(s):
    1233-1237

    Synthetic aperture radar (SAR) imagery is significantly deteriorated by the random phase noises which are generated by the frequency jitter of the transmit signal and atmospheric turbulence. In this paper, we recast the SAR imaging problem via the phase-corrupted data as for a special case of quadratic compressed sensing (QCS). Although the quadratic measurement model has potential to mitigate the effects of the phase noises, it also leads to a nonconvex and quartic optimization problem. In order to overcome these challenges and increase reconstruction robustness to the phase noises, we proposed a QCS-based SAR imaging algorithm by greedy local search to exploit the spatial sparsity of scatterers. Our proposed imaging algorithm can not only avoid the process of precise random phase noise estimation but also acquire a sparse representation of the SAR target with high accuracy from the phase-corrupted data. Experiments are conducted by the synthetic scene and the moving and stationary target recognition Sandia laboratories implementation of cylinders (MSTAR SLICY) target. Simulation results are provided to demonstrate the effectiveness and robustness of our proposed SAR imaging algorithm.

  • A Comprehensive Medicine Management System with Multiple Sources in a Nursing Home in Taiwan

    Liang-Bi CHEN  Wan-Jung CHANG  Kuen-Min LEE  Chi-Wei HUANG  Katherine Shu-Min LI  

     
    PAPER

      Pubricized:
    2016/04/01
      Vol:
    E99-D No:6
      Page(s):
    1447-1454

    Residents living in a nursing home usually have established medical histories in multiple sources, and most previous medicine management systems have only focused on the integration of prescriptions and the identification of repeated drug uses. Therefore, a comprehensive medicine management system is proposed to integrate medical information from different sources. The proposed system not only detects inappropriate drugs automatically but also allows users to input such information for any non-prescription medicines that the residents take. Every participant can fully track the residents' latest medicine use online and in real time. Pharmacists are able to issue requests for suggestions on medicine use, and residents can also have a comprehensive understanding of their medicine use. The proposed scheme has been practically implemented in a nursing home in Taiwan. The evaluation results show that the average time to detect an inappropriate drug use and complete a medicine record is reduced. With automatic and precise comparisons, the repeated drugs and drug side effects are identified effectively such that the amount of medicine cost spent on the residents is also reduced. Consequently, the proactive feedback, real-time tracking, and interactive consulting mechanisms bind all parties together to realize a comprehensive medicine management system.

  • Dominant Fairness Fairness: Hierarchical Scheduling for Multiple Resources in Heterogeneous Datacenters

    Wenzhu WANG  Kun JIANG  Yusong TAN  Qingbo WU  

     
    LETTER-Fundamentals of Information Systems

      Pubricized:
    2016/03/03
      Vol:
    E99-D No:6
      Page(s):
    1678-1681

    Hierarchical scheduling for multiple resources is partially responsible for the performance achievements in large scale datacenters. However, the latest scheduling technique, Hierarchy Dominant Resource Fairness (H-DRF)[1], has some shortcomings in heterogeneous environments, such as starving certain jobs or unfair resource allocation. This is because a heterogeneous environment brings new challenges. In this paper, we propose a novel scheduling algorithm called Dominant Fairness Fairness (DFF). DFF tries to keep resource allocation fair, avoid job starvation, and improve system resource utilization. We implement DFF in the YARN system, a most commonly used scheduler for large scale clusters. The experimental results show that our proposed algorithm leads to higher resource utilization and better throughput than H-DRF.

  • High Quality Pentacene Film Formation on N-Doped LaB6 Donor Layer

    Yasutaka MAEDA  Shun-ichiro OHMI  Tetsuya GOTO  Tadahiro OHMI  

     
    PAPER

      Vol:
    E99-C No:5
      Page(s):
    535-540

    In this research, we have investigated the deposition condition of pentacene film on nitrogen doped (N-doped) LaB6 donor layer for larger grain growth at the channel region for bottom-contact type pentacene-based organic field-effect transistors (OFETs) to improve the device characteristics. Source and drain bottom-contacts of Al were patterned and 2nm-thick N-doped LaB6 donor layer was deposited on the SiO2/Si(100) back-gate structure. The dendritic grain growth of pentacene larger than 10µm without lamellar grain growth was demonstrated when the deposition temperature and rate were 100°C and 0.5nm/min, respectively. Furthermore, it was found that the dendritic grain growth was realized at the boundary region of bottom-contact as well as channel region.

  • Parity Data De-Duplication in All Flash Array-Based OpenStack Cloud Block Storage

    Huiseong HEO  Cheongjin AHN  Deok-Hwan KIM  

     
    LETTER-Data Engineering, Web Information Systems

      Pubricized:
    2016/02/02
      Vol:
    E99-D No:5
      Page(s):
    1384-1387

    In recent years, the need to build solid state drive (SSD)-based cloud storage systems has been increasing in order to process the big data generated by lots of Internet of Things devices and Internet users. Because these kinds of cloud systems require high performance and reliable storage, the use of flash-based Redundant Array of Independent Disks (RAID) will increase. But in flash-based RAID storage, parity data must be updated with every data write operation, which can more quickly overwhelm SSD's lifespan. To solve this problem, this letter proposes parity data deduplication for OpenStack cloud storage systems using an all flash array. Unlike the traditional data deduplication method, it only removes parity data, which will be stored in the parity disks of the all flash array. Experiments show that the proposed parity data deduplication method can efficiently reduce the number of parity data write operations, compared to the traditional data deduplication method.

  • Application Performance Profiling in Android Dalvik Virtual Machines

    Hung-Cheng CHANG  Kuei-Chung CHANG  Ying-Dar LIN  Yuan-Cheng LAI  

     
    PAPER-Software System

      Pubricized:
    2016/01/25
      Vol:
    E99-D No:5
      Page(s):
    1296-1303

    Most Android applications are written in JAVA and run on a Dalvik virtual machine. For smartphone vendors and users who wish to know the performance of an application on a particular smartphone but cannot obtain the source code, we propose a new technique, Dalvik Profiler for Applications (DPA), to profile an Android application on a Dalvik virtual machine without the support of source code. Within a Dalvik virtual machine, we determine the entry and exit locations of a method, log its execution time, and analyze the log to determine the performance of the application. Our experimental results show an error ratio of less than 5% from the baseline tool Traceview which instruments source code. The results also show some interesting behaviors of applications and smartphones: the performance of some smartphones with higher hardware specifications is 1.5 times less than the phones with lower specifications. DPA is now publicly available as an open source tool.

  • MineSpider: Extracting Hidden URLs Behind Evasive Drive-by Download Attacks

    Yuta TAKATA  Mitsuaki AKIYAMA  Takeshi YAGI  Takeo HARIU  Shigeki GOTO  

     
    PAPER-Web security

      Pubricized:
    2016/01/13
      Vol:
    E99-D No:4
      Page(s):
    860-872

    Drive-by download attacks force users to automatically download and install malware by redirecting them to malicious URLs that exploit vulnerabilities of the user's web browser. In addition, several evasion techniques, such as code obfuscation and environment-dependent redirection, are used in combination with drive-by download attacks to prevent detection. In environment-dependent redirection, attackers profile the information on the user's environment, such as the name and version of the browser and browser plugins, and launch a drive-by download attack on only certain targets by changing the destination URL. When malicious content detection and collection techniques, such as honeyclients, are used that do not match the specific environment of the attack target, they cannot detect the attack because they are not redirected. Therefore, it is necessary to improve analysis coverage while countering these adversarial evasion techniques. We propose a method for exhaustively analyzing JavaScript code relevant to redirections and extracting the destination URLs in the code. Our method facilitates the detection of attacks by extracting a large number of URLs while controlling the analysis overhead by excluding code not relevant to redirections. We implemented our method in a browser emulator called MINESPIDER that automatically extracts potential URLs from websites. We validated it by using communication data with malicious websites captured during a three-year period. The experimental results demonstrated that MINESPIDER extracted 30,000 new URLs from malicious websites in a few seconds that conventional methods missed.

  • Hybrid Recovery-Based Intrusion Tolerant System for Practical Cyber-Defense

    Bumsoon JANG  Seokjoo DOO  Soojin LEE  Hyunsoo YOON  

     
    PAPER

      Pubricized:
    2016/01/29
      Vol:
    E99-D No:4
      Page(s):
    1081-1091

    Due to the periodic recovery of virtual machines regardless of whether malicious intrusions exist, proactive recovery-based Intrusion Tolerant Systems (ITSs) are being considered for mission-critical applications. However, the virtual replicas can easily be exposed to attacks during their working period, and additionally, proactive recovery-based ITSs are ineffective in eliminating the vulnerability of exposure time, which is closely related to service availability. To address these problems, we propose a novel hybrid recovery-based ITS in this paper. The proposed method utilizes availability-driven recovery and dynamic cluster resizing. The availability-driven recovery method operates the recovery process by both proactive and reactive ways for the system to gain shorter exposure times and higher success rates. The dynamic cluster resizing method reduces the overhead of the system that occurs from dynamic workload fluctuations. The performance of the proposed ITS with various synthetic and real workloads using CloudSim showed that it guarantees higher availability and reliability of the system, even under malicious intrusions such as DDoS attacks.

261-280hit(1315hit)