The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] EAM(900hit)

261-280hit(900hit)

  • Decomposing Approach for Error Vectors of k-Error Linear Complexity of Certain Periodic Sequences

    Ming SU  

     
    PAPER-Cryptography and Information Security

      Vol:
    E97-A No:7
      Page(s):
    1542-1555

    The k-error linear complexity of periodic sequences is an important security index of stream cipher systems. By using an interesting decomposing approach, we investigate the intrinsic structure for the set of 2n-periodic binary sequences with fixed complexity measures. For k ≤ 4, we construct the complete set of error vectors that give the k-error linear complexity. As auxiliary results we obtain the counting functions of the k-error linear complexity of 2n-periodic binary sequences for k ≤ 4, as well as the expectations of the k-error linear complexity of a random sequence for k ≤ 3. Moreover, we study the 2t-error linear complexity of the set of 2n-periodic binary sequences with some fixed linear complexity L, where t < n-1 and the Hamming weight of the binary representation of 2n-L is t. Also, we extend some results to pn-periodic sequences over Fp. Finally, we discuss some potential applications.

  • Phased Array Antenna Beam Steering Scheme for Future Wireless Access Systems Using Radio-over-Fiber Technique

    Masayuki OISHI  Yoshihiro NISHIKAWA  Kosuke NISHIMURA  Keiji TANAKA  Shigeyuki AKIBA  Jiro HIROKAWA  Makoto ANDO  

     
    PAPER

      Vol:
    E97-B No:7
      Page(s):
    1281-1289

    This paper proposes a simple and practical scheme to decide the direction of a phased array antenna beam in wireless access systems using Radio-over-Fiber (RoF) technique. The feasibility of the proposed scheme is confirmed by the optical and wireless transmission experiments using 2GHz RoF signals. In addition, two-dimensional steering operation in the millimeter-wave band is demonstrated for targeting future high-speed wireless communication systems. The required system parameters for practical use are also provided by investigating the induced transmission penalties. The proposed detection scheme is applicable to two-dimensional antenna beam steering in the millimeter-wave band by properly designing the fiber length and wavelength variable range.

  • TRLMS: Two-Stage Resource Scheduling Algorithm for Cloud Based Live Media Streaming System

    Wei WEI  Yang LIU  Yuhong ZHANG  

     
    LETTER

      Vol:
    E97-D No:7
      Page(s):
    1731-1734

    This letter proposes an efficient Two-stage Resource scheduling algorithm for cloud based Live Media Streaming system (TRLMS). It transforms the cloud-based resource scheduling problem to a min-cost flow problem in a graph, and solves it by an improved Successive Short Path (SSP) algorithm. Simulation results show that TRLMS can enhance user demand satisfaction by 17.1% than mean-based method, and its time complexity is much lower than original SSP algorithm.

  • Detecting Trace of Seam Carving for Forensic Analysis

    Seung-Jin RYU  Hae-Yeoun LEE  Heung-Kyu LEE  

     
    PAPER-Image Recognition, Computer Vision

      Vol:
    E97-D No:5
      Page(s):
    1304-1311

    Seam carving, which preserves semantically important image content during resizing process, has been actively researched in recent years. This paper proposes a novel forensic technique to detect the trace of seam carving. We exploit the energy bias and noise level of images under analysis to reliably unveil the evidence of seam carving. Furthermore, we design a detector investigating the relationship among neighboring pixels to estimate the inserted seams. Experimental results from a large set of test images indicates the superior performance of the proposed methods for both seam carving and seam insertion.

  • Bitstream-Level Film Noise Cancellation for Damaged Video Playback

    Sinwook LEE  Euee-seon JANG  

     
    PAPER-Image Processing and Video Processing

      Vol:
    E97-D No:3
      Page(s):
    562-572

    In this paper, we propose a bitstream-level noise cancellation method for playback applications of damaged video. Most analog video data such as movies, news and historical research videos are now stored in a digital format after a series of conversion processes that include analog-to-digital conversion and compression. In many cases, noise such as blotches and line scratching remaining in analog media are not removed during the conversion process. On the other hand, noise is propagated in the compression stage because most media compression technologies use predictive coding. Therefore, it is imperative to efficiently remove or reduce the artifacts caused by noise as much as possible. In some cases, the video data with historical values are to be preserved without correcting the noise in order not to lose any important information resulting from the noise removal process. However, playback applications of such video data still need to undergo a noise reduction process to ensure picture quality for public viewing. The proposed algorithm identifies the candidate noise blocks at the bitstream-level to directly provide a noise reduction process while decoding the bitstream. Throughout the experimental results, we confirm the efficiency of the proposed method by showing RR and PR values of around 70 percent.

  • D-DB and D-RRDB Relaying with D-DQE Relay Network

    Yaser FAEDFAR  Mohd Fadzli Mohd SALLEH  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E97-B No:2
      Page(s):
    495-503

    In this study, a new method for Decode-Distributed Beamforming (D-DB) relaying is proposed. Each relay node decodes the source symbol by maximum likelihood detection. The detected symbol is entered into the stored Quantized Equal-gain (QE) codebook, where the label of the phase region is provided by a feedback link from the destination node. Therefore, the proposed relay network forms a Decode-Distributed QE (D-DQE) relay network. The performances of the D-DQE codebooks are examined by Monte-Carlo simulations, in which the feedback links and channel estimations are assumed to be error-free. The simulation results reveal that the symbol error rates of the D-DQE relay system improve the error performance of the QE codebooks when relay nodes are close to the source node. When error-free feedback bits are provided, the performance of the proposed D-DQE is better than that of Alamouti's Decode-Distributed Space-Time Coding (D-DSTC) relay network. The weakest relays are rejected to improve the performance of the D-DQE codebooks and reduce the number of feedback bits. This relay network is called Decode-Relay Rejection for Distributed Beamforming (D-RRDB) relay networks.

  • A Web Page Segmentation Approach Using Visual Semantics

    Jun ZENG  Brendan FLANAGAN  Sachio HIROKAWA  Eisuke ITO  

     
    PAPER-Data Engineering, Web Information Systems

      Vol:
    E97-D No:2
      Page(s):
    223-230

    Web page segmentation has a variety of benefits and potential web applications. Early techniques of web page segmentation are mainly based on machine learning algorithms and rule-based heuristics, which cannot be used for large-scale page segmentation. In this paper, we propose a formulated page segmentation method using visual semantics. Instead of analyzing the visual cues of web pages, this method utilizes three measures to formulate the visual semantics: layout tree is used to recognize the visual similar blocks; seam degree is used to describe how neatly the blocks are arranged; content similarity is used to describe the content coherent degree between blocks. A comparison experiment was done using the VIPS algorithm as a baseline. Experiment results show that the proposed method can divide a Web page into appropriate semantic segments.

  • A New Necessary Condition for Feedback Functions of de Bruijn Sequences

    Zhongxiao WANG  Wenfeng QI  Huajin CHEN  

     
    PAPER-Symmetric Key Based Cryptography

      Vol:
    E97-A No:1
      Page(s):
    152-156

    Recently nonlinear feedback shift registers (NFSRs) have frequently been used as basic building blocks for stream ciphers. A major problem concerning NFSRs is to construct NFSRs which generate de Bruijn sequences, namely maximum period sequences. In this paper, we present a new necessary condition for NFSRs to generate de Bruijn sequences. The new condition can not be deduced from the previously proposed necessary conditions. It is shown that the number of NFSRs whose feedback functions satisfy all the previous necessary conditions but not the new one is very large.

  • Comprehensive Analysis of Initial Keystream Biases of RC4

    Takanori ISOBE  Toshihiro OHIGASHI  Yuhei WATANABE  Masakatu MORII  

     
    PAPER-Symmetric Key Based Cryptography

      Vol:
    E97-A No:1
      Page(s):
    139-151

    After the disclosure of the RC4 algorithm in 1994, a number of keystream biases of RC4 were reported, e.g., Mantin and Shamir showed that the second byte of the keystream is biased to 0, Sepehrdad et al. found that the l-th byte of the keystream is biased to -l, and Maitra et al. showed that 3rd to 255th bytes of the keystream are also biased to 0, where l is the keylength in byte. However, it is unknown that which bias is strongest in each byte of initial bytes. This paper comprehensively analyzes initial keystream biases of RC4. In particular, we introduce several new biases in the initial (1st to 257th) bytes of the RC4 keystream, which are substantially stronger than known biases. Combining the new biases with the known ones, a complete list of strongest single-byte biases in the first 257bytes of the RC4 keystream is constructed for the first time. Then, we show that our set of these biases are applicable to plaintext recovery attacks, key recovery attacks and distinguishing attacks.

  • One-Dimensional Electronic Beam-Scanning Center-Fed Imaging Reflector Antenna

    Michio TAKIKAWA  Izuru NAITO  Kei SUWA  Yoshio INASAWA  Yoshihiko KONISHI  

     
    PAPER-Antenna Technologies

      Vol:
    E97-C No:1
      Page(s):
    17-25

    We propose a new, compact, center-fed reflector antenna that is capable of one-dimensional electronic beam scanning. The reflector profile in the vertical section (beam-scanning) is set to an imaging reflector configuration, while the profile in the orthogonal horizontal section (non-beam-scanning) is set to a Cassegrain antenna configuration. The primary radiator is a one-dimensional phased array antenna. We choose a center-fed configuration in order to reduce the antenna size as much as possible, despite the fact that the increased blocking area from the primary radiator causes degradation in efficiency compared to the typical offset-type configuration. In the proposed configuration, beam scanning is limited to one dimension, but utilize a compact, center-fed configuration that maintains the features of an imaging reflector antenna. We present the antenna configuration and design method and show that results obtained from the prototype antenna verify the predicted performance.

  • Fast Implementation of KCipher-2 for Software and Hardware

    Yuto NAKANO  Kazuhide FUKUSHIMA  Shinsaku KIYOMOTO  Tsukasa ISHIGURO  Yutaka MIYAKE  Toshiaki TANAKA  Kouichi SAKURAI  

     
    PAPER-Information Network

      Vol:
    E97-D No:1
      Page(s):
    43-52

    KCipher-2 is a word-oriented stream cipher and an ISO/IEC 18033 standard. It is listed as a CRYPTREC cryptographic algorithm for Japanese governmental use. It consists of two feedback shift registers and a non-linear function. The size of each register in KCipher-2 is 32 bits and the non-linear function mainly applies 32-bit operations. Therefore, it can be efficiently implemented as software. SNOW-family stream ciphers are also word-oriented stream ciphers, and their high performance has already been demonstrated.We propose optimised implementations of KCipher-2 and compare their performance to that of the SNOW-family and other eSTREAM portfolios. The fastest algorithm is SNOW 2.0 and KCipher-2 is the second fastest despite the complicated irregular clocking mechanism. However, KCipher-2 is the fastest of the feasible algorithms, as SNOW 2.0 has been shown to have a security flaw. We also optimise the hardware implementation for the Virtex-5 field-programmable gate array (FPGA) and show two implementations. The first implementation is a rather straightforward optimisation and achieves 16,153 Mbps with 732 slices. In the second implementation, we duplicate the non-linear function using the structural advantage of KCipher-2 and we achieve 17,354 Mbps with 813 slices. Our implementation of KCipher-2 is around three times faster than those of the SNOW-family and efficiency, which is evaluated by “Throughput/Area (Mbps/slice)”, is 3.6-times better than that of SNOW 2.0 and 8.5-times better than that of SNOW 3G. These syntheses are performed using Xilinx ISE version 12.4.

  • Multi-Dimensional Shift Multiplexing Technique with Spherical Reference Waves

    Shuhei YOSHIDA  Takaaki MATSUBARA  Hiroyuki KURATA  Shuma HORIUCHI  Manabu YAMAMOTO  

     
    PAPER

      Vol:
    E96-C No:12
      Page(s):
    1520-1524

    Holographic data storage (HDS) is a next-generation optical storage that uses the principles of holography. The multiplex holographic recording method is an important factor that affects the recording capacity of this storage. Various multiplex recording methods have been proposed so far. In this study, we focus on shift multiplexing with spherical waves and propose a method of shift multiplex recording that combines the in-plane direction and thickness direction of the recording medium. In conventional shift multiplexing with spherical waves, shift multiplexing is usually carried out with respect to the direction parallel to the plane of the recording medium. By focusing on the fact that shift selectivity is also in the thickness direction, we examined the possibility of a multiplex recording method that combines multiple shift directions. Simulation and experimental verification shows that the proposed method is effective in principle.

  • High-Throughput Electron Beam Direct Writing of VIA Layers by Character Projection with One-Dimensional VIA Characters

    Rimon IKENO  Takashi MARUYAMA  Satoshi KOMATSU  Tetsuya IIZUKA  Makoto IKEDA  Kunihiro ASADA  

     
    PAPER-Physical Level Design

      Vol:
    E96-A No:12
      Page(s):
    2458-2466

    Character projection (CP) is a high-speed mask-less exposure technique for electron-beam direct writing (EBDW). In CP exposure of VIA layers, higher throughput is realized if more VIAs are exposed in each EB shot, but it will result in huge number of VIA characters to cover arbitrary VIA arrangements. We adopt one-dimensional VIA arrays as the basic CP character architecture to increase VIA numbers in an EB shot while saving the stencil area by superposed character arrangement. In addition, CP throughput is further improved by layout constraints on the VIA placement in the detail routing phase. Our experimental results proved the feasibility of our exposure strategy in the practical CP use in 14nm lithography.

  • GPU-Chariot: A Programming Framework for Stream Applications Running on Multi-GPU Systems

    Fumihiko INO  Shinta NAKAGAWA  Kenichi HAGIHARA  

     
    PAPER

      Vol:
    E96-D No:12
      Page(s):
    2604-2616

    This paper presents a stream programming framework, named GPU-chariot, for accelerating stream applications running on graphics processing units (GPUs). The main contribution of our framework is that it realizes efficient software pipelines on multi-GPU systems by enabling out-of-order execution of CPU functions, kernels, and data transfers. To achieve this out-of-order execution, we apply a runtime scheduler that not only maximizes the utilization of system resources but also encapsulates the number of GPUs available in the system. In addition, we implement a load-balancing capability to flow data efficiently through multiple GPUs. Furthermore, a callback interface enables overlapping execution of functions in third-party libraries. By using kernels with different performance bottlenecks, we show that our out-of-order execution is up to 20% faster than in-order execution. Finally, we conduct several case studies on a 4-GPU system and demonstrate the advantages of GPU-chariot over a manually pipelined code. We conclude that GPU-chariot can be useful when developing stream applications with software pipelines on multiple GPUs and CPUs.

  • A Resilient Video Streaming System Based on Location-Aware Overlapped Cluster Trees

    Tomoki MOTOHASHI  Akihiro FUJIMOTO  Yusuke HIROTA  Hideki TODE  Koso MURAKAMI  

     
    PAPER-Network

      Vol:
    E96-B No:11
      Page(s):
    2865-2874

    For real-time video streaming, tree-based Application Level Multicasts (ALMs) are effective with respect to transmission delay and jitter. In particular, multiple-tree ALMs can alleviate the inefficient use of upload bandwidth among the nodes. However, most conventional multiple-tree ALMs are constructed using a Distributed Hash Table (DHT). This causes considerable delay and consumes substantial network resources because the DHT, generally, does not take distances in the IP network into account. In addition, the network constructed by a DHT has poor churn resilience because the network needs to reconstruct all the substreams of the tree network. In this paper, we propose a construction method involving overlapped cluster trees for delivering streamed data that are churn resilient. In addition, these overlapped cluster trees can decrease both the delay and the consumption of network resources because the node-connecting process takes IP network distances into account. In the proposed method, clusters are divided or merged using their numbers of members to optimize cluster size. We evaluated the performance of the proposed method via extensive computer simulations. The results show that the proposed method is more effective than conventional multiple-tree ALMs.

  • SCTP Tunneling: Flow Aggregation and Burst Transmission to Save Energy for Multiple TCP Flows over a WLAN

    Masafumi HASHIMOTO  Go HASEGAWA  Masayuki MURATA  

     
    PAPER-Internet

      Vol:
    E96-B No:10
      Page(s):
    2615-2624

    To raise the energy efficiency of wireless clients, it is important to sleep in idle periods. When multiple network applications are running concurrently on a single wireless client, packets of each application are sent and received independently, but multiplexed at MAC-level. This uncoordinated behavior makes it difficult to control of sleep timing. In addition, frequent state transitions between active and sleep modes consume non-negligible energy. In this paper, we propose a transport-layer approach that resolves this problem and so reduces energy consumed by multiple TCP flows on a wireless LAN (WLAN) client. The proposed method, called SCTP tunneling, has two key features: flow aggregation and burst transmission. It aggregates multiple TCP flows into a single SCTP association between a wireless client and an access point to control packet transmission and reception timing. Furthermore, to improve the sleep efficiency, SCTP tunneling reduces the number of state transitions by handling multiple packets in a bursty fashion. In this study, we construct a mathematical model of the energy consumed by SCTP tunneling to assess its energy efficiency. Through numerical examples, we show that the proposed method can reduce energy consumption by up to 69%.

  • Wireless Power Transfer from Space to Earth Open Access

    Tadashi TAKANO  

     
    INVITED PAPER

      Vol:
    E96-C No:10
      Page(s):
    1218-1226

    Microwaves have typically been used for communications and radar, but nowadays are given much attention to energy transfer applications. This paper describes microwave power transfer from a satellite to Earth that is visualized as a solar power satellite system (SPSS). After the system configuration is explained, unique engineering features are presented. Then, some contributions made by Japanese community are introduced, focusing on microwave and antenna engineering. As SPSS will handle high power levels at microwave frequency, and so components should be mass-produced to reduce the cost, then we need to shift our paradigm on the technology involved. Finally, the roadmap to a commercial SPSS is discussed.

  • Mode Analysis of Phase-Constant Nonreciprocity in Ferrite-Embedded CRLH Metamaterials

    Andrey POROKHNYUK  Tetsuya UEDA  Yuichi KADO  Tatsuo ITOH  

     
    PAPER

      Vol:
    E96-C No:10
      Page(s):
    1263-1272

    Phase-nonreciprocal ε-negative and CRLH metamaterials are analyzed using a new approach in which field analysis and transmission line model are combined. The examined one-dimensional nonreciprocal metamaterials are composed of a ferrite-embedded microstrip line periodically loaded with shunt stubs. In the present approach, the phase constant nonreciprocity is analytically estimated and formulated under the assumption of operating frequency far above the ferromagnetic resonant frequency. The present approach gives a good explanation to the phenomenon in terms of ferromagnetic properties of the ferrite and asymmetric geometry of the metamaterial structure, showing a good agreement with numerical simulations and experiment.

  • Subarray-Processing Iterative SISO Multi-User Detection and Multi-Beam Directivity Control for Large-Scale Antenna Array in Quasi-Millimeter-Wave SDMA Systems

    Masaaki FUJII  Ji-Yun SEOL  TaeYoung KIM  JaeWeon CHO  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E96-B No:10
      Page(s):
    2650-2660

    A subarray signal processing scheme is described for a large-scale two-dimensional analog-digital hybrid beamformer to be used in quasi-millimeter-wave-band mobile communication systems. Multiple analog phased arrays direct their respective beams to multiple users, enabling space-division multiple access (SDMA). An iterative soft-input soft-output (SISO) multi-user detector recovers multi-user signals from subarray output signals corrupted by inter-user interference (IUI). In addition, a phased-array directivity control algorithm is derived based on inter-subarray signal phase-difference estimation from inter-beam-interference (IBI)-cancelled subarray output signals. Simulation results demonstrate that our proposed scheme achieves reduced hardware complexity, IUI-resistant multi-user signal detection, and IBI-resistant multi-user-tracking phased-array directivity control.

  • Some Notes on the Generalized Cyclotomic Binary Sequences of Length 2pm and pm

    Tongjiang YAN  Xiaoping LI  

     
    LETTER-Cryptography and Information Security

      Vol:
    E96-A No:10
      Page(s):
    2049-2051

    This paper contributes to k-error linear complexity of some generalized cyclotomic binary sequences of length 2pm and pm constructed in recent years. By defining related reference sequences, we find that these sequences possess very low k-error linear complexity for some certain values of the parameter k even though they have high linear complexity. Moreover, we point out that (p-1)-tuple distributions of all these sequences are not span. Thus they should be selected carefully for use in stream cipher systems.

261-280hit(900hit)