The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] EE(4073hit)

3961-3980hit(4073hit)

  • Coding of LSP Parameters Using Interframe Moving Average Prediction and Multi-Stage Vector Quantization

    Hitoshi OHMURO  Takehiro MORIYA  Kazunori MANO  Satoshi MIKI  

     
    LETTER

      Vol:
    E76-A No:7
      Page(s):
    1181-1183

    This letter proposes an LSP quantizing method which uses interframe correlation of the parameters. The quantized parameters are represented as a moving average of code vectors. Using this method, LSP parameters are quantized efficiently and the degradation of decoded parameters caused by bit errors affects only a few following frames.

  • Pitch Synchronous Innovation CELP (PSI-CELP)

    Takehiro MORIYA  Satoshi MIKI  Kazunori MANO  Hitoshi OHMURO  

     
    LETTER

      Vol:
    E76-A No:7
      Page(s):
    1177-1180

    A speech coding scheme at 3.6 kbit/s has been proposed. The scheme is based on CELP (Code Excited Linear Prediction) with pitch synchronous innovation, which means even random codevectors as well as adaptive codevectors have pitch periodicity. The quality is comparable to 6.7 kbit/s VSELP coder for the Japanese cellular radio standard.

  • Research Topics and Results on Analysis and Diagnosis of Linear Circuits by Japanese Researchers in These Twenty Years

    Shoji SHINODA  

     
    PAPER

      Vol:
    E76-A No:7
      Page(s):
    1097-1110

    This paper reviews the historical aspect of contributions on the theory of analysis and diagnosis of linear circuits, which have been made by Japanese researchers in these twenty years. On papers of diagnosis, those related to element-value solvability (or determinability) are mainly reviewed. Some important problems are suggested.

  • A Simplified Realization of Adaptive Notch Filter and Its Convergence Properties

    Shotaro NISHIMURA  

     
    LETTER

      Vol:
    E76-A No:7
      Page(s):
    1147-1149

    In this letter, a new structure of adaptive IIR notch filter is presented. The structure is based on direct form realization and uses the similar adaptation algorithm given in Ref. (4). A quantitative analysis for convergence properties is developed. It is shown that the proposed structure shows superior performance comparing with previously proposed designs. The results of computer simulations are presented to substantiate the analysis.

  • An Estimation Method of Region Guaranteeing Existence of a Solution Path in Newton Type Homotopy Method

    Mitsunori MAKINO  Masahide KASHIWAGI  Shin'ichi OISHI  Kazuo HORIUCHI  

     
    LETTER

      Vol:
    E76-A No:7
      Page(s):
    1113-1116

    An estimation method of region is presented, in which a solution path of the so-called Newton type homotopy equation in guaranteed to exist, it is applied to a certain class of uniquely solvable nonlinear equations. The region can be estimated a posteriori, and its upper bound also can be estimated a priori.

  • A High-Speed ATM Switching Architecture Using Small Shared Switch Blocks

    Ken-ichi ENDO  Naoaki YAMANAKA  

     
    LETTER

      Vol:
    E76-B No:7
      Page(s):
    736-740

    This paper proposes a compact high-speed ATM switching architecture that employs a novel arbitration method. The NN matrix shaped crosspoint switch is realized with D small switch blocks (SSBs). The number of crosspoints and address comparators is reduced from N2 to (N/D)2. Each block contains N/D input lines and N/D output lines. The association between output lines and output ports is logically changed each cell period. This arrangement permits each input port to be connected to N/D output ports in each cell period. Output-line contention control is realized block-by-block so high-speed operation is realized. The traffic characteristics of the proposed switch architecture are analyzed using computer simulations. According to the simulation results, the cell loss rate of 10-8 is achieved with only 100-cell input and output-buffers under the heavy random load of 0.9 for any size switch. The proposed ATM switching architecture can construct the Gbit/s high-speed ATM switch fabric needed for B-ISDN.

  • Analysis of Excess Intensity Noise due to External Optical Feedback in DFB Semiconductor Lasers on the Basis of Mode Competition Theory

    Michihiko SUHARA  Minoru YAMADA  

     
    PAPER-Opto-Electronics

      Vol:
    E76-C No:6
      Page(s):
    1007-1017

    The generation mechanism for excess intensity noise due to optical feedback is analyzed theoretically and experimentally. Modal rate equations under the weakly coupled condition with external feedback are derived to include the mode competition phenomena in DFB and Fabry-Perot lasers. We found that the sensitivity of the external feedback strongly depends on design parameters of structure, such as the coupling constant of the corrugation, the facet reflection and the phase relation between the corrugation and the facet. A DFB laser whose oscillating wavelength is well adjusted to Bragg wavelength through insertion of a phase adjustment region becomes less sensitive to external optical feedback than a Fabry-Perot laser, but other types of DFB lasers revealing a stop band are more sensitive than the Fabry-Perot laser.

  • Noise Temperature of Active Feedback Resonator (AFR)

    Youhei ISHIKAWA  Sadao YAMASHITA  Seiji HIDAKA  

     
    PAPER

      Vol:
    E76-C No:6
      Page(s):
    925-931

    An active feedback resonator (AFR) is a kind of circuit which functions as a high unloaded Q resonator. The AFR employs an active feedback loop which compensates for the energy loss of a conventional microwave resonator. Owing to an active element in the AFR, thermal noise should be taken into account when designing the AFR. In order to simplify a circuit design using the AFR we introduced noise temperature (Tn) for the AFR. In addition, we describe the AFR design which gives minimum noise temperature. Finally, the noise temperature, measured in an AFR as a band elimination filter, is compared with the theoretical value to evaluate the AFR.

  • Algorithms for Finding the Largest Subtree whose Copies Cover All the Leaves

    Tatsuya AKUTSU  Satoshi KOBAYASHI  Koichi HORI  Setsuo OHSUGA  

     
    LETTER-Algorithm and Computational Complexity

      Vol:
    E76-D No:6
      Page(s):
    707-710

    This paper presents efficient algorithms for finding the largest tree S such that there are vertex disjoint subtrees S1, , S (k1) of T each of which is isomorphic to S and every leaf of T is a leaf of some Si. The algorithms are useful for learning a macro table.

  • Three-Dimensional Passive Elements for Compact GaAs MMICs

    Makoto HIRANO  Yuhki IMAI  Ichihiko TOYODA  Kenjiro NISHIKAWA  Masami TOKUMITSU  Kazuyoshi ASAI  

     
    PAPER

      Vol:
    E76-C No:6
      Page(s):
    961-967

    Novel three-dimensional structures for passive elements--inductors, capacitors, transmission lines, and airbridges--have been developed to reduce the area they consume in GaAs MMICs. These structures can be formed with a simple technology by electroplating along the sidewalls of a photoresist. Adopting the new structures, most passive elements in MMICs have been shrunk to less than 1/4 the size of conventional ones.

  • Error Probability Analysis in Reduced State Viterbi Decoding

    Carlos VALDEZ  Hiroyuki FUJIWARA  Ikuo OKA  Hirosuke YAMAMOTO  

     
    PAPER-Communication Theory

      Vol:
    E76-B No:6
      Page(s):
    667-676

    The performance evaluation by analysis of systems employing Reduced State Viterbi decoding is addressed. This type of decoding is characterized by an inherent error propagation effect, which yields a difficulty in the error probability analysis, and has been usually neglected in the literature. By modifying the Full State trellis diagram, we derive for Reduced State schemes, new transfer function bounds with the effects of error propagation. Both the Chernoff and the tight upper bound are applied to the transfer function in order to obtain the bit error probability upper bound. Furthermore, and in order to get a tighter bound for Reduced State decoding schemes with parallel transitions, the pairwise probability of the two sequences involved in an error event is upper bounded, and then the branch metric of a sequence taken from that bound is associated with a truncated instead of complete Gaussian noise probability density function. To support the analysis, particular assessment is done for a Trellis Coded Modulation scheme.

  • Overlapped Partitioning Algorithm for the Solution of LSEs with Fixed Size Processor Array

    Ben CHEN  Mahoki ONODA  

     
    PAPER-Modeling and Simulation

      Vol:
    E76-A No:6
      Page(s):
    1011-1018

    In this paper we present an Overlapped Block Gauss-Seidel (OBGS) algorithm for the solution of large scale LSEs (Linear System of Equations) based on array architecture which we have already proposed. Better partitioning for processor array usually requires (1) balanced block size, and (2) minimum coupling between blocks for better convergence. These conditions can well be satisfied by overlapping some variables in computation algorithm. The mathematical implication of overlapped partitioning is discussed at first, and some examples show the effectiveness of OBGS algorithm. Conclusion points out that the convergence properties can well be improved by proper choice of overlapped variables. An efficient algorithm is given for choosing block and variables in order to realize above conditions.

  • Analysis of Transient Spectral Spread of Directly Modulated DFB LD's

    Takeshi KAWAI  Atsutaka KURIHARA  Masakazu MORI  Toshio GOTO  Akira MIYAUCHI  Takakiyo NAKAGAMI  

     
    PAPER-Optical Communication

      Vol:
    E76-B No:6
      Page(s):
    677-683

    The transient spectral spread of directly modulated DFB LD's, which appears in the time-resolved chirping measurement, is studied experimentally and numerically. Such a phenomenon has been already reported as a side mode oscillation called "subpeak", but there has been little argument as to the physical origin. We make it clear that the subpeak is a spurious mode due to the influence of the photodetector bandwidth. The minimum photodetector bandwidth which is necessary in the time-resolved chirping measurement is examined. Furthermore the distortion of the long-distance transmitted waveform is also explained by one mode oscillation.

  • Very Small MMIC Variable Frequency and Q Factor Active Bandpass Filters Using Novel Positive and Negative Feedback Design Techniques

    Hideo SUWAKI  Takashi OHIRA  

     
    PAPER

      Vol:
    E76-C No:6
      Page(s):
    919-924

    This paper presents newly developed very small MMIC bandpass filters along with novel positive and negative feedback techniques. In order to maintain the expected Q factor without unwanted oscillations in the positive feedback loop, the unity-coupler principle is proposed to stabilize the constituent amplifier. A prototype bandpass filter is monolithically integrated in a very small area of only 0.1 mm2 on a GaAs substrate. A sharp factor as high as 5.6/1-30 dB is achieved near the frequency range of 1 GHz. The other technique presented in this paper is to achieve the bandpass function without using any positive feedback. This is negative feedback consisting of feedback elements with the unique variable transfer function of b/(1as). A variable bandpass filter based on this design concept is also fabricated in a 1.21.3 mm2 area on a GaAs substrate. It has both a varactor and varistor integrated in the circuit, resulting in an independently controllable center frequency and Q factor. It is shown experimentally that the Q factor is controllable over a remarkable range of 20 to 400 and the center frequency is broader than 100 MHz at the 1 GHz band. By cascading two of the fabricated MMIC chips, a forth-order frequency response is successfully obtained along with a 35-40 dB forward gain and an in-band gain flatness of 0.35 dB.

  • A Hardware Architecture Design Methodology for Hidden Markov Model Based Recognition Systems Using Parallel Processing

    Jun-ichi TAKAHASHI  

     
    PAPER-Digital Signal Processing

      Vol:
    E76-A No:6
      Page(s):
    990-1000

    This paper presents a hardware architecture design methodology for hidden markov model based recognition systems. With the aim of realizing more advanced and user-friendly systems, an effective architecture has been studied not only for decoding, but also learning to make it possible for the system to adapt itself to the user. Considering real-time decoding and the efficient learning procedures, a bi-directional ring array processor is proposed, that can handle various kinds of data and perform a large number of computations efficiently using parallel processing. With the array architecture, HMM sub-algorithms, the forward-backward and Baum-Welch algorithms for learning and the Viterbi algorithm for decoding, can be performed in a highly parallel manner. The indispensable HMM implementation techniques of scaling, smoothing, and estimation for multiple observations can be also carried out in the array without disturbing the regularity of parallel processing. Based on the array processor, we propose the configuration of a system that can realize all HMM processes including vector quantization. This paper also describes that a high PE utilization efficiency of about 70% to 90% can be achieved for a practical left-to-right type HMMs.

  • Future Broadcasting Technologies: Perspectives and Trends

    Osamu YAMADA  Ichiro YUYAMA  

     
    INVITED PAPER

      Vol:
    E76-B No:6
      Page(s):
    592-598

    This paper briefly considers future broadcasting technologies, including digital television as a system for the near future and three-dimensional television as a part of a system to be developed rather later. However, due to limitations of space, this paper discusses only video technologies in detail. First, the status of bit reduction technologies for digital television is described and then satellite digital broadcasting and terrestrial digital broadcasting are also discussed. The authors stress the necessity of the further development of digital video compression technologies. Later, we discuss three-dimensional television, we describe requirements for the service and the present status of the technologies. And last, the paper considers the future prospects for a three-dimensional television service.

  • A Mathematical Theory of System Fluctuations Using Fuzzy Mapping

    Kazuo HORIUCHI  Yasunori ENDO  

     
    PAPER-Mathematical Theory

      Vol:
    E76-A No:5
      Page(s):
    678-682

    In the direct product space of a complete metric linear space X and its related space Y, a fuzzy mapping G is introduced as an operator by which we can define a projective fuzzy set G(x,y) for any xX and yY. An original system is represented by a completely continuous operator f(x)Y, e.g., in the form x=λ(f(x)), (λ is a linear operator), and a nondeterministic or fuzzy fluctuation induced into the original system is represented by a generalized form of system equation xβG(x,f(x)). By establishing a new fixed point theorem for the fuzzy mapping G, the existence and evaluation problems of solution are discussed for this generalized equation. The analysis developed here for the fluctuation problem goes beyond the scope of the perturbation theory.

  • Unsupervised Learning of 3D objects Conserving Global Topological Order

    Jinhui CHAO  Kenji MINOWA  Shigeo TSUJII  

     
    PAPER-Neural Nets--Theory and Applications--

      Vol:
    E76-A No:5
      Page(s):
    749-753

    The self-organization rule of planar neural networks has been proposed for learning of 2D distributions. However, it cannot be applied to 3D objects. In this paper, we propose a new model for global representation of the 3D objects. Based on this model, global topology reserving self-organization is achieved using parallel local competitive learning rule such as Kohonen's maps. The proposed model is able to represent the objects distributively and easily accommodate local features.

  • Process and Device Technologies of CMOS Devices for Low-Voltage Operation

    Masakazu KAKUMU  

     
    INVITED PAPER

      Vol:
    E76-C No:5
      Page(s):
    672-680

    Process and device technologies of CMOS devices for low-voltage operation are described. First, optimum power-supply voltage for CMOS devices is examined in detail from the viewpoints of circuit performance, device reliability and power dissipation. As a result, it is confirmed that power-supply voltage can be reduced without any speed loss of the CMOS device. Based upon theoretical understanding, the author suggests that lowering threshold voltage and reduction of junction capacitance are indispensable for CMOS devices with low-voltage supply, in order to improve the circuit performance, as expected from MOS device scaling. Process and device technologies such as Silicon On Insulator (SOI) device, low-temperature operation and CMOS Shallow Junction Well FET (CMOS-SJET) structure are reviewed for reduction of the threshold voltage and junction capacitance which lead to high-seed operation of the COMS device at low-voltage.

  • A Feedback-Loop Type Transmission Power Control for TDMA Satellite Communication Systems

    Hiroshi KAZAMA  Takeo ATSUGI  Shuzo KATO  

     
    PAPER

      Vol:
    E76-B No:5
      Page(s):
    529-535

    This paper proposes a feedback-loop type transmission power control (TPC) scheme coupled with first and second order prediction methods and analyzes the optimum control period and residual control error. In order to minimize residual control error, the three main factors contributing to residual control error are analyzed. First, to detect accurately up-link rain attenuation, a channel quality detection method is proposed and analyzed experimentally for puseudo-error detection. Second, rain attenuation rates in Ka band are measured and analyzed statistically. Finally, the optimum control period of the proposed TPC scheme is analyzed. The simulation results on the prototype TPC system show a maximum of 4.5 dB residual control error is achievable with an optimum control period of about 1 second to 1.5 seconds.

3961-3980hit(4073hit)