The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] IN(26286hit)

26221-26240hit(26286hit)

  • Stabilization of Power Line Impedance for Radiated EMI Level Measurement

    Atsuya MAEDA  

     
    PAPER

      Vol:
    E75-B No:3
      Page(s):
    148-156

    It is important to develop methods of measuring radiated electromagnetic interference level that will produce identical results at all measuring locations. We have considered a number of problems which prevent the achievement of identical results, and proposed some solutions. However, agreement of measurement values adequate for practical purposes has not been achieved. After our successive studies, we finally became aware that there is a causal relationship with changes in the line-to-ground impedance of the power supply. It is presumed that power cables of AC-powered devices operate as antenna elements that produce emission. Thus changes in the power line-to-ground impedance cause variations in the radiation efficiency to produce a different EMI level. We therefore made plans to measure the values of line-to-ground impedance at the AC power outlet for the frequency range of 100kHz to 500MHz at various locations where measurements are made of EMI from EUT (Equipment Under Test). The impedance varies greatly between 6ohms and 2 k-ohm, not only according to the frequency, but also according to the measurement location. In such cases, the EMI level shows a different value even with the same EUT, and it usually increases-especially for vertical polarization. We have developed a new type of LISN (Line Impedance Stabilization Network or Artificial Mains Network) to stabilize the power line-to-ground impedance to get consistent measurement conditions. The LISN consists of feed-through capacitors and an disk type RF resistor. The measurements confirm the consistency in the impedance value which is maintained at 50 ohms in the frequency range from 1MHz to 500MHz. Thus the newly developed LISN improves consistency of measurement values at all locations, while it was difficult to obtain good correlation before employing the LISN. We feel confident that incorporation of the method discussed here in the pertinent technical standards of EMI measurements, such as CISPR, would lead to a major improvement in getting consistent measurements values.

  • Anechoic Chambers for EMI Test

    Yasutaka SHIMIZU  

     
    INVITED PAPER

      Vol:
    E75-B No:3
      Page(s):
    101-106

    Anechoic chambers have been effectively used for microwave propagation, electromagnetic interference (EMI) and immunity testing. The electromagnetic compatibility (EMC) problem has recently become serious and many of these chambers have been constructed. The results of a questionnaire survey sent to anechoic chamber manufacturers are described that a total of 450 anechoic chambers have been constructed in Japan since 1964. Twenty years ago the purpose of the chambers was microwave propagation research, but more than 50 each year have recently being built for EMC/EMI and immunity testing. Their size has gradually been reduced by the use of absorbing materials such as ferrite with dielectric materials. The lowest frequency of most chambers is 30MHz for the 3 m method of site attenuation.

  • Analysis of Multiple Reflections by Transfer Functions of Transmission Line Networks with Branches and Its Application

    Iwata SAKAGAMI  Akihiro KAJI  Tomoaki USAMI  

     
    PAPER

      Vol:
    E75-B No:3
      Page(s):
    157-164

    Networks in this paper consist of non-commensurate transmission lines with branches and branching resistors at junctions. When signals on a transmission line are divided multiple ways at the junctions of branched lines, multiple reflection waves occur by the impedance mismatching. For the analysis of multiple reflections and network design, lattice diagrams have been used so far. However, the expansions of network transfer functions provide an easier way for the same purpose as in the case of lattice diagram. The output transient responses can be directly calculated from the expansions of network transfer functions or can be numerically calculated by software such as the fast Laplace transform. Therefore, once the network transfer functions are given, calculation of transient responses can be carried out quite easily. In this paper, the expansions of network transfer functions have been derived with respect to delay elements ξi=exp(-sτi) by formularizing the propagation of multiple reflection waves, and then the multi-variable rational network transfer functions have been obtained from the expansions. As an example, a 3-port transmission line network with normalized characteristic impedances 1, 1, 6 and normalized branching resistors 1/23, 1/23, 126/23 has been taken up. As the terminal resistances at output ports can be determined from the relation of the first arriving wave to the steady state, the design of 3-port transmission line networks which will furnish output waveforms similar to the waveform of the input within given tolerances has been considered. The output waveforms have been calculated for pure terminal resistances and for the pure terminal resistances plus parasitic parallel capacitances.

  • Prosodic Control to Express Emotions for Man-Machine Speech Interaction

    Yoshinori KITAHARA  Yoh'ichi TOHKURA  

     
    PAPER

      Vol:
    E75-A No:2
      Page(s):
    155-163

    In speech output expected as an ideal man-machine interface, there exists an important issue on emotion production in order to not only improve its naturalness but also achieve more sophisticated speech interaction between man and machine. Speech has two aspects, which are prosodic information and phonetic feature. For the purpose of application to natural and high quality speech synthesis, the role of prosody in speech perception has been studied. In this paper, prosodic components, which contribute to the expression of emotions and their intensity, are clarified by analyzing emotional speech and by conducting listening tests of synthetic speech. The analysis is performed by substituting the components of neutral speech (i.e., one with no particular emotion) with those of emotional speech preserving the temporal correspondence by means of DTW. It has been confirmed that prosodic components, which are composed of pitch structure, temporal structure and amplitude structure, contribute to the expression of emotions more than the spectral structure of speech. The results of listening tests using prosodic substituted speech show that temporal structure is the most important for the expression of anger, while all of three components are much more important for the intensity of anger. Pitch structure also plays a significant role in the expression of joy and sadness and their intensity. These results make it possible to convert neutral utterances into utterances expressing various emotions. The results can also be applied to controlling the emotional characteristics of speech in synthesis by rule.

  • General-Purpose Device Simulation System with an Effective Graphic Interface

    Masaaki TOMIZAWA  Akira YOSHII  Shunji SEKI  

     
    PAPER

      Vol:
    E75-C No:2
      Page(s):
    226-233

    We have developed an efficient general-purpose two-dimensional device simulation system which consists of a solver, and pre- and post-processors. This system can easily handle any complicated device having a non-rectangular shape. It can also be applied to compound semiconductor devices with heterojunctions, including optical devices such as laser diodes. In order to handle any device, a new program for construction of device geometry is developed as a preprocessor. It has an efficient graphic interface to reduce the time required to input data for simulations, which is a very time consuming task for complicated devices. A new efficient data structure representing device geometry is introduced in the program. During postprocessing, any physical quantity can be displayed on the multi-window screen. In addition, a general-purpose solver for basic semiconductor equations is implemented in the system. Using this system, any device can be successfully analyzed in a unified manner and the turn-around time for the simulation is significantly reduced.

  • Process Simulation for Laser Recrystallization

    Bo HU  Albert SEIDL  Gertraud NEUMAYER  Reinhold BUCHNER  Karl HABERGER  

     
    PAPER

      Vol:
    E75-C No:2
      Page(s):
    138-144

    Modeling and numerical simulation of crystal growth of Si film and heat transport in 3D structure were made for optimization of physical and geometrical parameters used during laser recrystallization. Based on simulations a new concept called micro-absorber was introduced for obtaining defect-free Si films.

  • Performance Limitation of Leaky Bucket Algorithm for Usage Parameter Control and Bandwidth Allocation Methods

    Naoaki YAMANAKA  Youichi SATO  Ken-ichi SATO  

     
    LETTER-Communication Networks and Service

      Vol:
    E75-B No:2
      Page(s):
    82-86

    One performance limitation of the "Leaky Bucket algorithm" for usage parameter control and traffic management in Asynchronous Transfer Mode (ATM) networks is analyzed. Simulation results show that the conventional statistical bandwidth allocation method, which uses the most bursty pattern permitted by the Leaky Bucket algorithm, can not guarantee the QOS of established Virtual Channels/Paths (VC/VP). As a result, the VC/VP bandwidth allocation method based on the Leaky Bucket algorithm is proven to be unsatisfactory.

  • Testing the k-Layer Routability in a Circular Channel--Case in which No Nets Have Two Terminals on the Same Circle--

    Noriya KOBAYASHI  Toshinobu KASHIWABARA  Sumio MASUDA  

     
    PAPER-Computer Aided Design (CAD)

      Vol:
    E75-A No:2
      Page(s):
    233-239

    Suppose that there are terminals on two concentric circles, Cin and Cout, with Cin inside of Cout. We are given a set of nets each of which consists of a terminal on Cin and a terminal on Cout. The routing area is the annular region between the two circles. In this paper, we present an O(nk-1) time algorithm for testing whether the given net set is k-layer routable without vias, where k2 and n is the number of nets.

  • Numerical Techniques on Enhancing Robustness for Stress-Dependent Oxidation Simulation Using Finite Element Method in SUPREM-IV

    Yoshinori ODA  Kaung-Shia YU  Thye-Lai TUNG  Arthur RAEFSKY  Donald L. SCHARFETTER  Robert W. DUTTON  

     
    PAPER

      Vol:
    E75-C No:2
      Page(s):
    150-155

    In this paper, a three part algorithm is employed to obtain stable convergence during stress dependent oxidation simulation using the finite element method is presented. By introducing (1) a reduced integration formulation, (2) an averaging procedure for the mid-side node velocities at the Si/SiO2 interface, and (3) a three-node element to discretize the oxidant diffusion equation, major improvements in achieving stable convergence are realized during stress dependent oxidation simulation. This technique is generally applicable for an oxidation simulator using the finite element method.

  • Simulation of Stress Redistribution on LOCOS Structure during Oxidation and Subsequent Cooling Down

    Shigeki KURODA  Kenji NISHI  

     
    PAPER

      Vol:
    E75-C No:2
      Page(s):
    145-149

    This paper is concerned with the stress simulation of a LOCOS structure during not only oxidation but also the subsequent cooling down based on viscoelastic stress modeling. A viscoelastic model is successfully applied to the oxide, nitride and silicon substrate for a LOCOS structure. Thermal stress is also taken into account during the cooling down process. The viscoelastic deformation problem of all the three materials for the LOCOS structure are solved by a two-dimensional finite element method. It is the first time to show that the stress values after cooling down to room temperature are much higher than those right after oxidation. It is also shown that varying the cooling down rates results in the different stress values after cooling down.

  • Evaluation of the Point Defect Bulk Recombination Rate by Ion Implantation at High Temperatures

    Peter PICHLER  Rainer SCHORK  Thomas KLAUSER  Heiner RYSSEL  

     
    PAPER

      Vol:
    E75-C No:2
      Page(s):
    128-137

    In recent years, ion implantation has become one of the key techniques in semiconductor fabrication. The annealing of the damage produced during implantation is, however, not fully understood. Ion implantation at high temperatures allows the time-resolved study of implantation-enhanced diffusion. During the process, point defects are generated by the ion implantation and consumed by recombination in the bulk as well as by diffusion to the surface and recombination there. With increasing temperatures, the recombination of point defects, which are acting as diffusion vehicles, results in reduced effective diffusion. Profiles processed above 900 show marked uphill diffusion at the surface caused by large gradients of the point defect concentrations. This uphill diffusion affirms the generally accepted pair diffusion theories. Since the point defects are in steady state even after process times which are short compared to the total process time, we are able to give a qualitative analysis of the dose dependence of the diffusion. By extensive numerical simulations, we could estimate the product of bulk recombination rate and equilibrium concentrations of self-interstitials and vacancies as well as the interface recombination velocity for the self-interstitials. The results obtained are in qualitative agreement with previous work of others. The results demonstrate, in fact, clearly the advantages of the method presented. But due to experimental problems concerning the temperature measurement, which have not been fully resolved up to now, the results have to be considered as crude estimates.

  • An Improved Bandgap Narrowing Model Based on Corrected Intrinsic Carrier Concentration

    Naoyuki SHIGYO  Noritoshi KONISHI  Hideki SATAKE  

     
    PAPER

      Vol:
    E75-C No:2
      Page(s):
    156-160

    We present a new apparent bandgap narrowing model for semiconductor device simulation. The new model is derived from revised data of previous measurements on the apparent bandgap narrowing by using a corrected intrinsic carrier concentration. The revised values reveal sufficient agreement with our theoretical calculation. The new model is implemented in a triangular mesh device simulator TRIMEDES. Simulated BJT current-voltage and current-temperature characteristics using the proposed model reveal excellent agreement with measurements.

  • Information Disseminating Schemes for Fault Tolerance in Hypercubes

    Svante CARLSSON  Yoshihide IGARASHI  Kumiko KANAI  Andrzej LINGAS  Kinya MIURA  Ola PETERSSON  

     
    PAPER-Graphs, Networks and Matroids

      Vol:
    E75-A No:2
      Page(s):
    255-260

    We present schemes for disseminating information in the n-dimensional hypercube with some faulty nodes/edges. If each processor can send a message to t neighbors at each round, and if the number of faulty nodes/edges is k(kn), then this scheme will broadcast information from any source to all destinations within any consecutive n+[(k+l)/t] rounds. We also discuss the case where the number of faulty nodes is not less than n.

  • Speech Coding and Recognition: A Review

    Andreas S. SPANIAS  Frank H. WU  

     
    PAPER

      Vol:
    E75-A No:2
      Page(s):
    132-148

    The objective of this paper is to provide an overview of the recent developments in the area of speech processing and in particular in the fields of speech coding and speech recognition. The speech coding review covers DPCM coders, model-based vocoders, waveform coders, and hybrid coders. The hybrid coders are described in some detail since they are the subject of current research. Our treatment of speech recognition techniques concentrates on the methodologies for voice recognition and the progress made in speaker independent recognition. In addition, we describe the efforts towards commercial deployment of this technology.

  • An Optimum Placement of Capacitors in the Layout of Switched Capacitor Networks

    Mineo KANEKO  Kimihiko KAZUI  Hiroaki KUNIEDA  

     
    PAPER-Analog Circuits and Signal Processing

      Vol:
    E75-A No:2
      Page(s):
    215-223

    An optimum placement of capacitors in the layout of Switched Capacitor networks is presented in this paper. The performance of integrated circuits is generally degraded by perturbations of physical parameters of each device and parasitic strays. The optimality imposed in this paper is the minimum degradation of a transfer function with respect to the distribution of capacitance values. A capacitance value per unit area fabricated on a LSI chip is assumed to be perturbed linearly with its x and y coordinates. The capacitor placement is determined so that the effects of such perturbation of capacitances to the overall transfer-characteristics are canceled. As the result, input-output transfer function will stay nominal under the linear perturbation model with arbitrary gradients.

  • Increase in Binaural Articulation Score by Simulated Localization Using Head-Related Transfer Function

    Shinji HAYASHI  

     
    PAPER

      Vol:
    E75-A No:2
      Page(s):
    149-154

    Binaural effects in two measures are studied. One measure is the detectable limen of click sounds under lateralization of diotic or dichotic noise signals, and the other is phoneme articulation score under localization or lateralization of speech and noise signals. The experiments use a headphones system with listener's own head related transfer function (HRTF) filters. The HRTF filter coefficients are calculated individually from the impulse responses due to the listener's HRTF measured in a slightly sound reflective booth. The frequency response of the headphone is compensated for using an inverse filter calculated from the response at the subject's own ear canal entrance point. Considering the speech frequency band in tele-communication systems is not sufficiently wide, the bandwidth of the HRTF filter is limited below 6.2 kHz. However, the experiments of the localization simulation in the horizontal plane show that the sound image is mostly perceived outside the head in the simulated direction. Under simulation of localization or lateralization of speech and noise signals, the phoneme articulation score increases when the simulation spatially separates the phonemes from the noise signals while the total signal to noise ratio for both ears is maintained constant. This result shows the binaural effect in speech intelligibility under the noise disturbance condition, which is regarded as a part of the cocktail party effect.

  • Experimentally Verified Majority and Minority Mobilities in Heavily Doped GaAs for Device Simulations

    Herbert S. BENNETT  Jeremiah R. LOWNEY  Masaaki TOMIZAWA  Tadao ISHIBASHI  

     
    PAPER

      Vol:
    E75-C No:2
      Page(s):
    161-171

    Low-field mobilities and velocity versus electric field relations are among the key input parameters for drift-diffusion simulations of field-effect and bipolar transistors. For example, most device simulations that treat scattering from ionized impurities contain mobilities or velocity versus field relations based on the Born approximation (BA). The BA is insensitive to the sign of the charged impurity and is especially poor for ionized impurity scattering because of the relatively strong scattering of long-wavelength carriers, which have low energies, and therefore violate the validity condition for the BA. Such carriers occur at high symmetry points in the Brillouin zone and are critical for device behavior. There has been a tendency in the past to assume that majority and minority mobilities are equal. This assumption can lead to incorrect interpretations of device data and thereby misleading design strategies based on such simulations. We have calculated the majority electron and minority hole mobilities in GaAs at 300 K for donor densities between 51016 and 11019 cm-3 and the majority hole and minority electron mobilities for acceptor densities between 51016 and 11020 cm-3. We have included all the important scattering mechanisms for GaAs: acoustic phonon, polar optic phonon, nonpolar optic phonon (holes only), piezoelectric, ionized impurity, carrier-carrier, and plasmon scattering. The ionized impurity and carrier-carrier scattering processes have been calculated with a quantum mechanical phase-shift analysis to obtain more accurate matrix elements for these two scattering mechanisms. We compare the total scattering rate for majority electrons due to ionized impurities based on exact phase shifts and on the BA used by Brooks-Herring. We also present additional data that show the differences between the exact phase-shift analyses and the BA for majority electron scattering rates as functions of carrier energy and scattering angle. These results show that the calculated low-field mobilities are in good agreement with experiment, but they predict that at high dopant densities minority mobilities should increase with increasing dopant density for a short range of densities. This effect occurs because of the reduction of plasmon scattering and the removal of carriers from carrier-carrier scattering because of the Pauli exclusion principle. Some recent experiments support this finding. These results are important for device modeling because of the need to have reliable values for the minority mobilities and velocity-field relations.

  • TM Scattering from a Dielectric-Loaded Semi-Circular Trough in a Conducting Plane

    Tah J. PARK  Hyo J. EOM  Wolfgang-M. BOERNER  Yoshio YAMAGUCHI  

     
    LETTER-Antennas and Propagation

      Vol:
    E75-B No:2
      Page(s):
    87-91

    The behavior of TM-wave scattering from a dielectric-loaded semicircular trough in a conducting half-space is investigated. The dielectric loading is made of a circular cylinder which lies in a semi-circular trough in the perfectly conducting plane. The formulation is numerically evaluated to investigate the scattered field pattern for various dielectric loading conditions. It is found that the scattering patterns exhibit the resonant behavior due to both of the concave surface contour and the dielectric loading.

  • An Effective Lowpass Temporal Filter Using Motion Adaptive Spatial Filtering

    Jong-Hum KIM  Soon-Hwa JANG  Seong-Dae KIM  

     
    LETTER-Digital Image Processing

      Vol:
    E75-A No:2
      Page(s):
    261-264

    Unlike a noise removal recursive or averaging filter, this letter presents a temporal filter which attenuates temporal high frequency components and improves visual effects. Although temporal aliasing occurs, the proposed filter proceeds temporal bandlimitation not affected by them. To reduce effects caused by aliasing components, a spatial filtering which is applied along the trajectory of motion is investigated. The proposed filter presents a de-aliasing and effective bandlimiting characteristics as well as reducing of noises.

  • Gesture Coding and a Gesture Dictionary for a Nonverbal Interface

    Takao KUROKAWA  

     
    INVITED PAPER

      Vol:
    E75-A No:2
      Page(s):
    112-121

    The development of computers capable of handling complex objects requires nonverbal interfaces that can bidirectionally mediate nonverbal communication including the gestures of both people and computers. Nonverbal expressions are poweful media for enriching and facilitating humancomputer interaction when used as interface languages. Four gestural modes are appropriate for human-computer interaction: the sign, indication, illustration and manipulation modes. All these modes can be conveyed by a generalized gesture interface that has specific processors for each mode. The basic component of the generalized gesture interface, a gesture dictionary, is proposed. The dictionary can accept sign and indicating gestures in which postures or body shapes are significant, pass their meaning to a computer and display gestures from the computer. For this purpose it converts body shapes into gestural codes by means of two code systems and, moreover, it performs bidirectional conversions of several gesture representations. This dictionary is applied to the translation of Japanese into sign language; it displays an actor who speaks the given Japanese sentences by gesture of sign words and finger alphabets. The performance of this application confirms the adequacy and usefulness of the gesture dictionary.

26221-26240hit(26286hit)