The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] IOD(519hit)

421-440hit(519hit)

  • Competitive Learning Methods with Refractory and Creative Approaches

    Michiharu MAEDA  Hiromi MIYAJIMA  

     
    PAPER

      Vol:
    E82-A No:9
      Page(s):
    1825-1833

    This paper presents two competitive learning methods with the objective of avoiding the initial dependency of weight (reference) vectors. The first is termed the refractory and competitive learning algorithm. The algorithm has a refractory period: Once the cell has fired, a winner unit corresponding to the cell is not selected until a certain amount of time has passed. Thus, a specific unit does not become a winner in the early stage of processing. The second is termed the creative and competitive learning algorithm. The algorithm is presented as follows: First, only one output unit is prepared at the initial stage, and a weight vector according to the unit is updated under the competitive learning. Next, output units are created sequentially to a prespecified number based on the criterion of the partition error, and competitive learning is carried out until the ternimation condition is satisfied. Finally, we discuss algorithms which have little dependence on the initial values and compare them with the proposed algorithms. Experimental results are presented in order to show that the proposed methods are effective in the case of average distortion.

  • A Hybrid Speech Coder Based on CELP and Sinusoidal Coding

    Mohammad NAKHAI  Farokh MARVASTI  

     
    PAPER-Speech Processing and Acoustics

      Vol:
    E82-D No:8
      Page(s):
    1190-1199

    In this paper, we study a new hybrid speech coder which employs a modified version of the harmonic sinusoidal analysis to encode the periodic contents of speech waveform and to split the speech spectrum into two frequency regions of harmonic and random components. A reliable fundamental frequency is estimated for the harmonic region using both speech and its linear predictive (LP) residual spectrum. The peak envelope of speech spectrum is encoded in terms of the coefficients of an all-pole spectrum. A harmonic tracking algorithm appropriately interpolates the sinusoidal parameters to achieve a smooth transition between the parameter update points and to reconstruct an essential level of periodicity in the synthetic voiced speech. The random part of spectrum and unvoiced speech are coded using the conventional CELP algorithm. The individual components are then combined at the decoder to obtain the synthetic speech. The proposed hybrid coder which combines the powerful features of the sinusoidal and CELP coding algorithms yeilds a high quality synthetic speech at 4.05 kbps.

  • An Optoelectronic Clock Recovery Circuit Using a Resonant Tunneling Diode and a Uni-Traveling-Carrier Photodiode

    Koichi MURATA  Kimikazu SANO  Tomoyuki AKEYOSHI  Naofumi SHIMIZU  Eiichi SANO  Masafumi YAMAMOTO  Tadao ISHIBASHI  

     
    PAPER-Optical Active Devices and Modules

      Vol:
    E82-C No:8
      Page(s):
    1494-1501

    A clock recovery circuit is a key component in optical communication systems. In this paper, an optoelectronic clock recovery circuit is reported that monolithically integrates a resonant tunneling diode (RTD) and a uni-traveling-carrier photodiode (UTC-PD). The circuit is an injection-locked-type RTD oscillator that uses the photo-current generated by the UTC-PD. Fundamental and sub-harmonic clock extraction is confirmed for the first time with good clock recovery circuit characteristics. The IC extracts an electrical 11.55-GHz clock signal from 11.55-Gbit/s RZ optical data streams with the wide locking range of 450 MHz and low power dissipation of 1.3 mW. Furthermore, the extraction of a sub-harmonic clock from 23.1-Gbit/s and 46.2-Gbit/s input data streams is also confirmed in the wider locking range of 600 MHz. The RMS jitter as determined from a single sideband phase noise measurement is extremely low at less than 200 fs in both cases of clock and sub-harmonic clock extraction. To our knowledge, the product of the output power and operating frequency of the circuit is the highest ever reported for injection-locked-type RTD oscillators. These characteristics indicate the feasibility of the optoelectronic clock recovery circuit for use in future ultra-high-speed fully monolithic receivers.

  • A High-Efficiency Waveguide Photodiode for 40-Gb/s Optical Receivers

    Takeshi TAKEUCHI  Takeshi NAKATA  Kiyoshi FUKUCHI  Kikuo MAKITA  Kenko TAGUCHI  

     
    PAPER-Optical Active Devices and Modules

      Vol:
    E82-C No:8
      Page(s):
    1502-1508

    Waveguide photodiodes (WGPDs) are key devices for high-speed optical receivers in trunk lines because of their potential ability to provide both high efficiency and a high-speed response. We have designed a waveguide photodiode for 40-Gb/s-range optical receivers. The optical coupling characteristics were simulated in detail to optimize the waveguide structure, and the electrodes of the photodiode were designed to form a coplanar transmission line to match the system impedance, which minimized frequency-response degradation. A highly beryllium-doped, low-temperature-grown InGaAs contact layer grown by gas source molecular beam epitaxy was used to reduce the series resistance, and approximately 40% reduction of series resistance was achieved. The fabricated device exhibited both a very high external quantum efficiency of 81% for 1.55-µm light and a sufficient bandwidth of more than 40 GHz. Though we used a simple conventional fabrication process, excellent characteristics were achieved due to the optimized optical design and well suppressed parasitic parameters.

  • A 1.3-µm Optical Transceiver Diode (TRAD) Module for TCM Transmission Systems in Optical Access Networks

    Yasumasa SUZAKI  Masanobu OKAYASU  Takeshi KUROSAKI  Makoto NAKAMURA  Yasuhiro SUZUKI  Hideaki KIMURA  Hiromu TOBA  

     
    PAPER-Optical Active Devices and Modules

      Vol:
    E82-B No:8
      Page(s):
    1194-1198

    We developed an optical transceiver diode (TRAD) module for bi-directional time-compression-multiplexing (TCM) transmission systems. A wavelength-insensitive structure as a receiver and a low-capacitance configuration in the module provide a high sensitivity. Stable switching of 156 Mbit/s NRZ burst signals between the transmitter and receiver modes is achieved. In addition, it is shown that optical module cost can be further reduced by using passive alignment on a Si bench.

  • A High-Efficiency Waveguide Photodiode for 40-Gb/s Optical Receivers

    Takeshi TAKEUCHI  Takeshi NAKATA  Kiyoshi FUKUCHI  Kikuo MAKITA  Kenko TAGUCHI  

     
    PAPER-Optical Active Devices and Modules

      Vol:
    E82-B No:8
      Page(s):
    1236-1242

    Waveguide photodiodes (WGPDs) are key devices for high-speed optical receivers in trunk lines because of their potential ability to provide both high efficiency and a high-speed response. We have designed a waveguide photodiode for 40-Gb/s-range optical receivers. The optical coupling characteristics were simulated in detail to optimize the waveguide structure, and the electrodes of the photodiode were designed to form a coplanar transmission line to match the system impedance, which minimized frequency-response degradation. A highly beryllium-doped, low-temperature-grown InGaAs contact layer grown by gas source molecular beam epitaxy was used to reduce the series resistance, and approximately 40% reduction of series resistance was achieved. The fabricated device exhibited both a very high external quantum efficiency of 81% for 1.55-µm light and a sufficient bandwidth of more than 40 GHz. Though we used a simple conventional fabrication process, excellent characteristics were achieved due to the optimized optical design and well suppressed parasitic parameters.

  • A 1.3-µm Optical Transceiver Diode (TRAD) Module for TCM Transmission Systems in Optical Access Networks

    Yasumasa SUZAKI  Masanobu OKAYASU  Takeshi KUROSAKI  Makoto NAKAMURA  Yasuhiro SUZUKI  Hideaki KIMURA  Hiromu TOBA  

     
    PAPER-Optical Active Devices and Modules

      Vol:
    E82-C No:8
      Page(s):
    1460-1464

    We developed an optical transceiver diode (TRAD) module for bi-directional time-compression-multiplexing (TCM) transmission systems. A wavelength-insensitive structure as a receiver and a low-capacitance configuration in the module provide a high sensitivity. Stable switching of 156 Mbit/s NRZ burst signals between the transmitter and receiver modes is achieved. In addition, it is shown that optical module cost can be further reduced by using passive alignment on a Si bench.

  • Design of Time-Varying Lifting Wavelet Filters

    Koichi KUZUME  Koichi NIIJIMA  

     
    PAPER

      Vol:
    E82-A No:8
      Page(s):
    1412-1419

    Wavelet filters used in usual applications are not time-varying filters. In this paper, we present a novel method to design biorthogonal wavelet filters which are orthogonal to the input signals. We call newly designed filters time-varying lifting wavelet filters (TVLWF). Their feature is to vary the wavelet filters adapting to the input signal by tuning free parameters contained in the lifting scheme developed by Sweldens. These filters are almost compact support and perfect reconstruction. By using TVLWF, we demonstrate an application to data compression of electrocardiogram (ECG) which is one of the semi-periodic time-series signals and show that the time-varying system can be constructed easily and the proposed method is very useful for data compression.

  • An Optoelectronic Clock Recovery Circuit Using a Resonant Tunneling Diode and a Uni-Traveling-Carrier Photodiode

    Koichi MURATA  Kimikazu SANO  Tomoyuki AKEYOSHI  Naofumi SHIMIZU  Eiichi SANO  Masafumi YAMAMOTO  Tadao ISHIBASHI  

     
    PAPER-Optical Active Devices and Modules

      Vol:
    E82-B No:8
      Page(s):
    1228-1235

    A clock recovery circuit is a key component in optical communication systems. In this paper, an optoelectronic clock recovery circuit is reported that monolithically integrates a resonant tunneling diode (RTD) and a uni-traveling-carrier photodiode (UTC-PD). The circuit is an injection-locked-type RTD oscillator that uses the photo-current generated by the UTC-PD. Fundamental and sub-harmonic clock extraction is confirmed for the first time with good clock recovery circuit characteristics. The IC extracts an electrical 11.55-GHz clock signal from 11.55-Gbit/s RZ optical data streams with the wide locking range of 450 MHz and low power dissipation of 1.3 mW. Furthermore, the extraction of a sub-harmonic clock from 23.1-Gbit/s and 46.2-Gbit/s input data streams is also confirmed in the wider locking range of 600 MHz. The RMS jitter as determined from a single sideband phase noise measurement is extremely low at less than 200 fs in both cases of clock and sub-harmonic clock extraction. To our knowledge, the product of the output power and operating frequency of the circuit is the highest ever reported for injection-locked-type RTD oscillators. These characteristics indicate the feasibility of the optoelectronic clock recovery circuit for use in future ultra-high-speed fully monolithic receivers.

  • Phase Assignment Control for Periodic and Bursty Sources in ATM Networks

    Fumio ISHIZAKI  Chikara OHTA  

     
    LETTER-Communication Networks and Services

      Vol:
    E82-B No:7
      Page(s):
    1064-1068

    In order to accommodate periodic and bursty sources into ATM networks effectively, we propose phase assignment control (PAC), which actively controls the phase of the new connection at its connection setup phase. To realize PAC, we develop an algorithm to find a good phase of the new connection in a short time. Simulation results show that the PAC can improve the system performance.

  • 10-GHz Operation of Multiple-Valued Quantizers Using Resonant-Tunneling Devices

    Toshihiro ITOH  Takao WAHO  Koichi MAEZAWA  Masafumi YAMAMOTO  

     
    PAPER-Circuits

      Vol:
    E82-D No:5
      Page(s):
    949-954

    We study ultrafast operation of multiple-valued quantizers composed of resonant-tunneling diodes (RTDs) and high electron mobility transistors (HEMTs). The operation principle of these quantizers is based on the monostable-multistable transition logic (MML) of series-connected RTDs. The quantizers are fabricated by monolithically integrating InP-based RTDs and 0.7-µm-gate-length HEMTs with a cutoff frequency of 40 GHz. To perform high-frequency experiments, an output buffer and termination resistors are attached to the quantizers, and the quantizers are designed to accommodate high-frequency input signals. Our experiments show that both ternary and quaternary quantizers can operate at clock frequencies of 10 GHz and at input frequencies of 3 GHz. This demonstrates the potential of applying RTD-based multiple-valued quantizers to high-frequency circuits.

  • Distortion Characteristics of an Even Harmonic Type Direct Conversion Receiver for CDMA Satellite Communications

    Hiroshi IKEMATSU  Ken'ichi TAJIMA  Kenji KAWAKAMI  Kenji ITOH  Yoji ISOTA  Osami ISHIDA  

     
    PAPER

      Vol:
    E82-C No:5
      Page(s):
    699-707

    This paper describes the distortion characteristics of an even harmonic type direct converter (EH-DC) used in earth stations for CDMA satellite communications. Direct conversion technique is known as a method to simplify circuit topologies of microwave transceivers. In satellite communications, multi carriers which have high and nearly equal level are provided to a quadrature mixer of the EH-DC. Hence, the third-order intermodulation degrades receiving characteristics. In this paper, we show the relationship between the distortion characteristics and noise figure of the EH-DC for CDMA satellite communication systems. Furthermore, we show NPR of even harmonic quadrature mixers caused by the third-order intermodulation. Experimental results in X-band indicate that the proposed EH-DC has almost the same BER characteristics compared with a heterodyne type transceiver.

  • Steady State Solution of Nonlinear Circuits by Asymptotic Periodic Waveform Evaluation

    Sermsak UATRONGJIT  Nobuo FUJII  

     
    PAPER-Modeling and Simulation

      Vol:
    E81-A No:10
      Page(s):
    2212-2218

    A new numerical procedure called asymptotic periodic waveform evaluation (APWE) for finding the steady state solution of nonlinear circuits driven by one tone periodic input signal is presented. APWE starts by constructing a virtual system which gives the same periodic steady state waveform as the original system's but with a shorter transient duration. Thus the periodic steady state (PSS) response can be obtained by simply performing transient analysis of the newly derived system for a few periods. An efficient method for solving the nonlinear equations occurred during the transient analysis is presented. To improve the convergence rate of PSS waveform, APWE is combined with extrapolation method. Some simulation results are shown.

  • Locating Fold Bifurcation Points Using Subspace Shooting

    Hidetaka ITO  Akira KUMAMOTO  

     
    PAPER-Chaos, Bifurcation and Fractal

      Vol:
    E81-A No:9
      Page(s):
    1791-1797

    A numerical method is proposed for efficiently locating fold bifurcation points of periodic orbits of high-dimensional differential-equation systems. This method is an extension of the subspace shooting method (or the Newton-Picard shooting method) that locates periodic orbits by combining the conventional shooting method and the brute-force method. Fold bifurcation points are located by combining a variant of the subspace shooting method with a fixed parameter value and the secant method for searching the parameter value of the bifurcation point. The target in the subspace-shooting part is an (not necessarily periodic) orbit represented by a Poincare mapping point which is close to the center manifold and satisfies the eigenvalue condition for the bifurcation. The secant-search part finds the parameter value where this orbit becomes periodic. Avoiding the need for differentiating the Poincare map with respect to the bifurcation parameter and exploiting several properties of the center manifold, the proposed method is both robust and easy to implement.

  • A 1. 3-µm Optical Transceiver Diode Module Using Passive Alignment Technique on a Si Bench with a V-Groove

    Yasumasa SUZAKI  Satoru SEKINE  Yasuhiro SUZUKI  Hiromu TOBA  

     
    LETTER-Opto-Electronics

      Vol:
    E81-C No:9
      Page(s):
    1508-1510

    We demonstrate a very simple and compact optical transceiver diode module using a passive alignment on a silicon bench with a V-groove. The excess loss caused by the passive alignment of an optical transceiver diode and a flat-end optical fiber is only 0. 6 dB. A high coupling efficiency of -4. 3 dB is obtained. This results in a high responsivity with a wavelength- and polarization-independence of 0. 5 dB over a 70 nm wavelength range and in good laser performance.

  • Systematic Derivation of Input-Output Relation for 2-D Periodically Time-Variant Digital Filters with an Arbitrary Periodicity

    Toshiyuki YOSHIDA  Yoshinori SAKAI  

     
    LETTER

      Vol:
    E81-A No:8
      Page(s):
    1699-1702

    The authors have proposed a design method for two-dimensional (2-D) separable-denominator (SD) periodically time-variant digital filters (PTV DFs) and confirmed their superiority over 2-D time-invariant DFs. In that result, the periodicity matrix representing the periodicity of the varying filter coefficients is, however, restricted to two cases. This paper extends that idea so that the input-output relation of 2-D SD PTV DFs with an arbitrary periodicity matrix can be determined. This enables us to design wide range of 2-D PTV DFs.

  • Wide-Wavelength-Range Modulator-Integrated DFB Laser Diodes Fabricated on a Single Wafer

    Masayuki YAMAGUCHI  Koji KUDO  Hiroyuki YAMAZAKI  Masashige ISHIZAKA  Tatsuya SASAKI  

     
    INVITED PAPER-Active Devices for Photonic Networks

      Vol:
    E81-C No:8
      Page(s):
    1219-1224

    Different-wavelength distributed feedback laser diodes with integrated modulators (DFB/MODs) are fabricated on a single wafer operate at wavelengths from 1. 52 µm to 1. 59 µm, a range comparable to the expanded Er-doped fiber amplifier gain band. A newly developed field-size-variation electron-beam lithography enables grating pitch to be controlled to within 0. 0012 nm, and narrow-stripe selective metal-organic vapor-phase epitaxy is used to control the bandgap wavelength of laser active layers and modulator absorption layers for each channel. The channel spacing of fabricated 40-channel DFB/MODs is 214 GHz in average with a standard deviation of 0. 39 nm. Very uniform lasing and modulating performances are achieved, such as threshold currents about 10 mA and extinction ratios about 20 dB at -2 V in average. These devices have been used to demonstrate 2. 5-Gb/s transmission over 600 km of a normal fiber with a power penalty of less than 1 dB.

  • 40 Gbit/s Single-Channel Soliton Transmission Using Periodic Dispersion Compensation

    Itsuro MORITA  Masatoshi SUZUKI  Noboru EDAGAWA  Keiji TANAKA  Shu YAMAMOTO  

     
    PAPER

      Vol:
    E81-C No:8
      Page(s):
    1309-1315

    The effectiveness of periodic dispersion compensation on single-channel 40 Gbit/s soliton transmission system was experimentally investigated. This technique requires just the dispersion compensation fibers and wideband optical filters in the transmission line, which has no difficulty to be used in the practical system. By using polarization-division-multiplexing together with periodic dispersion compensation, single-channel 40 Gbit/s transmission over 4700 km was demonstrated. Single-polarization 40 Gbit/s transmission experiments, which are more suitable for system implementation and compatible with WDM were also conducted. We investigated the transmission characteristics and pulse dynamics in different dispersion maps and in the optimized dispersion map, single-channel, single-polarization 40 Gbit/s transmission over 6300 km was successfully demonstrated.

  • Heart Rate Simulation with IPFM Model Considering Absolute Refractory Period and Demodulation of Original Generating Function

    Yasuaki NOGUCHI  Takeo HAMADA  Fujihiko MATSUMOTO  Suguru SUGIMOTO  

     
    PAPER-Medical Electronics and Medical Information

      Vol:
    E81-D No:8
      Page(s):
    933-939

    The Heart Rate Variability (HRV) analysis has become vigorous these days. One reason for this is that the HRV analysis investigates the dynamics of the autonomic nervous system activities which control the HRV. The Integral Pulse Frequency Modulation (IPFM) model is a pulse generating mechanism model in the nervous system, that is one of the models which connects the HRV to the autonomic nervous system activities. The IPFM model is a single frequency component model; however, the real HRV has multiple frequency components. Moreover, there are refractory periods after generating action potentials are initiated. Nevertheless, the IPFM model does not consider refractory periods. In order to make sure of the accuracy and the effectiveness of the integral function (IF) method applied to the real data, we consider the absolute refractory periods and two frequency components. In this investigation, the simulated HRV was made with a single and double frequency component using the IPFM model with and without absolute refractory periods. The original generating function of the IPFM model was demodulated by using the instantaneous heart rate tachogram. The power of the instantaneous pulse rate per minute was analyzed by the direct FFT method, the IF FFT method without the absolute refractory periods, and the IF FFT method with the absolute refractory periods. It was concluded that the IF FFT method can demodulate the original generating function accurately.

  • Precisely Wavelength-Controlled Corrugation for DFB Laser Diodes Delineated by Weighted-Dose Electron-Beam Lithography

    Yoshiharu MUROYA  Kenji SATO  Tetsuro OKUDA  Takahiro NAKAMURA  Hirohito YAMADA  Toshitaka TORIKAI  

     
    PAPER

      Vol:
    E81-C No:8
      Page(s):
    1225-1231

    Well-defined wavelength distributed feedback laser diodes (DFB-LDs) are required in WDM network systems. Since the EDFA gain bands have been expanded, even more wavelengths are needed for large-capacity dense-WDM transmission systems. A precisely pitch-controlled Bragg grating fabricated by electron beam (EB) lithography is very attractive for realizing these DFB-LDs. This paper describes this precise pitch- and phase-controlled grating delineated by a novel method called weighted-dose allocation variable-pitch EB-lithography (WAVE). In this method, an EB-dose profile for the grating is precisely controlled by a combination of the allocation and weighting of multiple exposures. This enables us to fabricate a precise fixed-pitch grating as well as a flexible grating with a continuously chirped structure. The stitching error at the exposure field boundary, the grating pitch, and the phase shift were evaluated by using a moire pattern generated by superimposing the microscope raster scan and the grating on a wafer. We also estimated amounts of the stitching errors from fabricated and calculated lasing characteristics, and clarified that the affect of the errors on the single-mode stability of LDs is negligible. Precise wavelength controlled λ/4 phase shifted DFB-LDs were successfully demonstrated as a result of both the WAVE method and the highly uniform MOVPE crystal growth.

421-440hit(519hit)