The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] IR(5768hit)

481-500hit(5768hit)

  • Matrix Completion ESPRIT for DOA Estimation Using Nonuniform Linear Array Open Access

    Hongbing LI  Qunfei ZHANG  Weike FENG  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2019/06/17
      Vol:
    E102-B No:12
      Page(s):
    2253-2259

    A novel matrix completion ESPRIT (MC-ESPRIT) algorithm is proposed to estimate the direction of arrival (DOA) with nonuniform linear arrays (NLA). By exploiting the matrix completion theory and the characters of Hankel matrix, the received data matrix of an NLA is tranformed into a two-fold Hankel matrix, which is a treatable for matrix completion. Then the decision variable can be reconstructed by the inexact augmented Lagrange multiplier method. This approach yields a completed data matrix, which is the same as the data matrix of uniform linear array (ULA). Thus the ESPRIT-type algorithm can be used to estimate the DOA. The MC-ESPRIT could resolve more signals than the MUSIC-type algorithms with NLA. Furthermore, the proposed algorithm does not need to divide the field of view of the array compared to the existing virtual interpolated array ESPRIT (VIA-ESPRIT). Simulation results confirm the effectiveness of MC-ESPRIT.

  • Wireless Power Transfer in the Radiative Near-Field Using a Novel Reconfigurable Holographic Metasurface Aperture Open Access

    Wenyu LUO  

     
    LETTER-Power Transmission

      Vol:
    E102-A No:12
      Page(s):
    1928-1931

    In this letter, we propose a novel wireless power transfer (WPT) scheme in the radiative near-field (Fresnel) region, which based on machine vision and dynamically reconfigurable holographic metasurface aperture capable of focusing power to multiple spots simultaneously without any information feedback. The states of metamaterial elements, formed by tunable meander line resonators, is determined using holographic design principles, in which the interference pattern of reference mode and the desired radiated field pattern leads to the required phase distribution over the surface of the aperture. The three-dimensional position information of mobile point sources is determined by machine visual localization, which can be used to obtain the aperture field. In contrast to the existing research studies, the proposed scheme is not only designed to achieve free multi-focuses, but also with machine vision, low-dimensionality, high transmission efficiency, real-time continuous reconfigurability and so on. The accuracy of the analysis is confirmed using numerical simulation.

  • A Low Area Overhead Design Method for High-Performance General-Synchronous Circuits with Speculative Execution

    Shimpei SATO  Eijiro SASSA  Yuta UKON  Atsushi TAKAHASHI  

     
    PAPER

      Vol:
    E102-A No:12
      Page(s):
    1760-1769

    In order to obtain high-performance circuits in advanced technology nodes, design methodology has to take the existence of large delay variations into account. Clock scheduling and speculative execution have overheads to realize them, but have potential to improve the performance by averaging the imbalance of maximum delay among paths and by utilizing valid data available earlier than worst-case scenarios, respectively. In this paper, we propose a high-performance digital circuit design method with speculative executions with less overhead by utilizing clock scheduling with delay insertions effectively. The necessity of speculations that cause overheads is effectively reduced by clock scheduling with delay insertion. Experiments show that a generated circuit achieves 26% performance improvement with 1.3% area overhead compared to a circuit without clock scheduling and without speculative execution.

  • Understanding Developer Commenting in Code Reviews

    Toshiki HIRAO  Raula GAIKOVINA KULA  Akinori IHARA  Kenichi MATSUMOTO  

     
    PAPER

      Pubricized:
    2019/09/11
      Vol:
    E102-D No:12
      Page(s):
    2423-2432

    Modern code review is a well-known practice to assess the quality of software where developers discuss the quality in a web-based review tool. However, this lightweight approach may risk an inefficient review participation, especially when comments becomes either excessive (i.e., too many) or underwhelming (i.e., too few). In this study, we investigate the phenomena of reviewer commenting. Through a large-scale empirical analysis of over 1.1 million reviews from five OSS systems, we conduct an exploratory study to investigate the frequency, size, and evolution of reviewer commenting. Moreover, we also conduct a modeling study to understand the most important features that potentially drive reviewer comments. Our results find that (i) the number of comments and the number of words in the comments tend to vary among reviews and across studied systems; (ii) reviewers change their behaviours in commenting over time; and (iii) human experience and patch property aspects impact the number of comments and the number of words in the comments.

  • Reconfigurable 3D Sound Processor and Its Automatic Design Environment Using High-Level Synthesis

    Saya OHIRA  Naoki TSUCHIYA  Tetsuya MATSUMURA  

     
    PAPER

      Vol:
    E102-A No:12
      Page(s):
    1804-1812

    We propose a three-dimensional (3D) sound processor architecture that includes super-directional modulation intellectual property (IP) and 3D sound processing IP and for consumer applications. In addition, we also propose an automatic design environment for 3D sound processing IP. This processor can generate realistic small sound fields in arbitrary spaces using ultrasound. In particular, in the 3D sound processing IP, in order to reproduce 3D audio, it is necessary to reproduce the personal frequency characteristics of complex head related transfer functions. For this reason, we have constructed an automatic design environment with high reconfigurability. This automatic design environment is based on high-level synthesis, and it is possible to automatically generate a C-based algorithm simulator and automatically synthesize the IP hardware by inputting a parameter description file for filter design. This automatic design environment can reduce the design period to approximately 1/5 as compared with conventional manual design. Applying the automatic design environment, a 3D sound processing IP was designed experimentally. The designed IP can be sufficiently applied to consumer applications from the viewpoints of hardware amount and power consumption.

  • An Efficient Blacklistable Anonymous Credentials without TTP of Tracing Authority Using Pairing-Based Accumulator

    Yuu AIKOU  Shahidatul SADIAH  Toru NAKANISHI  

     
    PAPER-Cryptography and Information Security

      Vol:
    E102-A No:12
      Page(s):
    1968-1979

    In conventional ID-based user authentications, privacy issues may occur, since users' behavior histories are collected in Service Providers (SPs). Although anonymous authentications such as group signatures have been proposed, these schemes rely on a Trusted Third Party (TTP) capable of tracing misbehaving users. Thus, the privacy is not high, because the TTP of tracing authority can always trace users. Therefore, the anonymous credential system using a blacklist without the TTP of tracing authority has been proposed, where blacklisted anonymous users can be blocked. Recently, an RSA-based blacklistable anonymous credential system with efficiency improvement has been proposed. However, this system still has an efficiency problem: The data size in the authentication is O(K'), where K' is the maximum number of sessions in which the user can conduct. Furthermore, the O(K')-size data causes the user the computational cost of O(K') exponentiations. In this paper, a blacklistable anonymous credential system using a pairing-based accumulator is proposed. In the proposed system, the data size in the authentication is constant for parameters. Although the user's computational cost depends on parameters, the dependent cost is O(δBL·K) multiplications, instead of exponentiations, where δBL is the number of sessions added to the blacklist after the last authentication of the user, and K is the number of past sessions of the user. The demerit of the proposed system is O(n)-size public key, where n corresponds to the total number of all sessions of all users in the system. But, the user only has to download the public key once.

  • New Sub-Band Adaptive Volterra Filter for Identification of Loudspeaker

    Satoshi KINOSHITA  Yoshinobu KAJIKAWA  

     
    PAPER-Digital Signal Processing

      Vol:
    E102-A No:12
      Page(s):
    1946-1955

    Adaptive Volterra filters (AVFs) are usually used to identify nonlinear systems, such as loudspeaker systems, and ordinary adaptive algorithms can be used to update the filter coefficients of AVFs. However, AVFs require huge computational complexity even if the order of the AVF is constrained to the second order. Improving calculation efficiency is therefore an important issue for the real-time implementation of AVFs. In this paper, we propose a novel sub-band AVF with high calculation efficiency for second-order AVFs. The proposed sub-band AVF consists of four parts: input signal transformation for a single sub-band AVF, tap length determination to improve calculation efficiency, switching the number of sub-bands while maintaining the estimation accuracy, and an automatic search for an appropriate number of sub-bands. The proposed sub-band AVF can improve calculation efficiency for which the dominant nonlinear components are concentrated in any frequency band, such as loudspeakers. A simulation result demonstrates that the proposed sub-band AVF can realize higher estimation accuracy than conventional efficient AVFs.

  • Speeding Up Revocable Group Signature with Compact Revocation List Using Vector Commitments

    Yasuyuki SEITA  Toru NAKANISHI  

     
    PAPER-Cryptography

      Vol:
    E102-A No:12
      Page(s):
    1676-1687

    In ID-based user authentications, a privacy problem can occur, since the service provider (SP) can accumulate the user's access history from the user ID. As a solution to that problem, group signatures have been researched. One of important issues in the group signatures is the user revocation. Previously, an efficient revocable scheme with signing/verification of constant complexity was proposed by Libert et al. In this scheme, users are managed by a binary tree, and a list of data for revoked users, called a revocation list (RL), is used for revocation. However, the scheme suffers from the large RL. Recently, an extended scheme has been proposed by Sadiah and Nakanishi, where the RL size is reduced by compressing RL. On the other hand, there is a problem that some overhead occurs in the authentication as a price for reducing the size of RL. In this paper, we propose an extended scheme where the authentication is speeded up by reducing the number of Groth-Sahai (GS) proofs. Furthermore, we implemented it on a PC to show the effectiveness. The verification time is about 30% shorter than that of the previous scheme by Sadiah and Nakanishi.

  • Empirical Study on Improvements to Software Engineering Competences Using FLOSS

    Neunghoe KIM  Jongwook JEONG  Mansoo HWANG  

     
    LETTER

      Pubricized:
    2019/09/24
      Vol:
    E102-D No:12
      Page(s):
    2433-2434

    Free/libre open source software (FLOSS) are being rapidly employed in several companies and organizations, because it can be modified and used for free. Hence, the use of FLOSS could contribute to its originally intended benefits and to the competence of its users. In this study, we analyzed the effect of using FLOSS on related competences. We investigated the change in the competences through an empirical study before and after the use of FLOSS among project participants. Consequently, it was confirmed that the competences of the participants improved after utilizing FLOSS.

  • Maximizing Lifetime of Data-Gathering Sensor Trees in Wireless Sensor Networks

    Hiroshi MATSUURA  

     
    PAPER-Network

      Pubricized:
    2019/06/10
      Vol:
    E102-B No:12
      Page(s):
    2205-2217

    Sensor-data gathering using multi-hop connections in a wireless sensor network is being widely used, and a tree topology for data gathering is considered promising because it eases data aggregation. Therefore, many sensor-tree-creation algorithms have been proposed. The sensors in a tree, however, generally run on batteries, so long tree lifetime is one of the most important factors in collecting sensor data from a tree over a long period. It has been proven that creating the longest-lifetime tree is a non-deterministic-polynomial complete problem; thus, all previously proposed sensor-tree-creation algorithms are heuristic. To evaluate a heuristic algorithm, the time complexity of the algorithm is very important, as well as the quantitative evaluation of the lifetimes of the created trees and algorithm speed. This paper proposes an algorithm called assured switching with accurate graph optimization (ASAGAO) that can create a sensor tree with a much longer lifetime much faster than other sensor-tree-creation algorithms. In addition, it has much smaller time complexity.

  • Implementation and Area Optimization of LUT6 Based Convolution Structure on FPGA

    Huangtao WU  Wenjin HUANG  Rui CHEN  Yihua HUANG  

     
    LETTER

      Vol:
    E102-A No:12
      Page(s):
    1813-1815

    To implement the parallel acceleration of convolution operation of Convolutional Neural Networks (CNNs) on field programmable gate array (FPGA), large quantities of the logic resources will be consumed, expecially DSP cores. Many previous researches fail to make a well balance between DSP and LUT6. For better resource efficiency, a typical convolution structure is implemented with LUT6s in this paper. Besides, a novel convolution structure is proposed to further reduce the LUT6 resource consumption by modifying the typical convolution structure. The equations to evaluate the LUT6 resource consumptions of both structures are presented and validated. The theoretical evaluation and experimental results show that the novel structure can save 3.5-8% of LUT6s compared with the typical structure.

  • Tweet Stance Detection Using Multi-Kernel Convolution and Attentive LSTM Variants

    Umme Aymun SIDDIQUA  Abu Nowshed CHY  Masaki AONO  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2019/09/25
      Vol:
    E102-D No:12
      Page(s):
    2493-2503

    Stance detection in twitter aims at mining user stances expressed in a tweet towards a single or multiple target entities. Detecting and analyzing user stances from massive opinion-oriented twitter posts provide enormous opportunities to journalists, governments, companies, and other organizations. Most of the prior studies have explored the traditional deep learning models, e.g., long short-term memory (LSTM) and gated recurrent unit (GRU) for detecting stance in tweets. However, compared to these traditional approaches, recently proposed densely connected bidirectional LSTM and nested LSTMs architectures effectively address the vanishing-gradient and overfitting problems as well as dealing with long-term dependencies. In this paper, we propose a neural network model that adopts the strengths of these two LSTM variants to learn better long-term dependencies, where each module coupled with an attention mechanism that amplifies the contribution of important elements in the final representation. We also employ a multi-kernel convolution on top of them to extract the higher-level tweet representations. Results of extensive experiments on single and multi-target benchmark stance detection datasets show that our proposed method achieves substantial improvement over the current state-of-the-art deep learning based methods.

  • Effective Direction-of-Arrival Estimation Algorithm by Exploiting Fourier Transform for Sparse Array

    Zhenyu WEI  Wei WANG  Ben WANG  Ping LIU  Linshu GONG  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2019/05/16
      Vol:
    E102-B No:11
      Page(s):
    2159-2166

    Sparse arrays can usually achieve larger array apertures than uniform linear arrays (ULA) with the same number of physical antennas. However, the conventional direction-of-arrival (DOA) estimation algorithms for sparse arrays usually require the spatial smoothing operation to recover the matrix rank which inevitably involves heavy computational complexity and leads to a reduction in the degrees-of-freedom (DOFs). In this paper, a low-complex DOA estimation algorithm by exploiting the discrete Fourier transform (DFT) is proposed. Firstly, the spatial spectrum of the virtual array constructed from the sparse array is established by exploiting the DFT operation. The initial DOA estimation can obtain directly by searching the peaks in the DFT spectrum. However, since the number of array antennas is finite, there exists spectrum power leakage which will cause the performance degradation. To further improve the angle resolution, an iterative process is developed to suppress the spectrum power leakage. Thus, the proposed algorithm does not require the spatial smoothing operation and the computational complexity is reduced effectively. In addition, due to the extention of DOF with the application of the sparse arrays, the proposed algorithm can resolve the underdetermined DOA estimation problems. The superiority of the proposed algorithm is demonstrated by simulation results.

  • Amplification Characteristics of a Phase-Sensitive Amplifier of a Chirped Optical Pulse

    Kyo INOUE  

     
    PAPER-Lasers, Quantum Electronics

      Pubricized:
    2019/06/07
      Vol:
    E102-C No:11
      Page(s):
    818-824

    Phase-sensitive amplification (PSA) has unique properties, such as the quantum-limited noise figure of 0 dB and the phase clamping effect. This study investigates PSA characteristics when a chirped pulse is incident. The signal gain, the output waveform, and the noise figure for an optical pulse having been chirped through chromatic dispersion or self-phase modulation before amplification are analyzed. The results indicate that the amplification properties for a chirped pulse are different from those of a non-chirped pulse, such that the signal gain is small, the waveform is distorted, and the noise figure is degraded.

  • Multi-Hypothesis Prediction Scheme Based on the Joint Sparsity Model Open Access

    Can CHEN  Chao ZHOU  Jian LIU  Dengyin ZHANG  

     
    PAPER-Image Processing and Video Processing

      Pubricized:
    2019/08/05
      Vol:
    E102-D No:11
      Page(s):
    2214-2220

    Distributed compressive video sensing (DCVS) has received considerable attention due to its potential in source-limited communication, e.g., wireless video sensor networks (WVSNs). Multi-hypothesis (MH) prediction, which treats the target block as a linear combination of hypotheses, is a state-of-the-art technique in DCVS. The common approach is under the supposition that blocks that are dissimilar from the target block are given lower weights than blocks that are more similar. This assumption can yield acceptable reconstruction quality, but it is not suitable for scenarios with more details. In this paper, based on the joint sparsity model (JSM), the authors present a Tikhonov-regularized MH prediction scheme in which the most similar block provides the similar common portion and the others blocks provide respective unique portions, differing from the common supposition. Specifically, a new scheme for generating hypotheses and a Euclidean distance-based metric for the regularized term are proposed. Compared with several state-of-the-art algorithms, the authors show the effectiveness of the proposed scheme when there are a limited number of hypotheses.

  • Synchronized Tracking in Multiple Omnidirectional Cameras with Overlapping View

    Houari SABIRIN  Hitoshi NISHIMURA  Sei NAITO  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2019/07/24
      Vol:
    E102-D No:11
      Page(s):
    2221-2229

    A multi-camera setup for a surveillance system enables a larger coverage area, especially when a single camera has limited monitoring capability due to certain obstacles. Therefore, for large-scale coverage, multiple cameras are the best option. In this paper, we present a method for detecting multiple objects using several cameras with large overlapping views as this allows synchronization of object identification from a number of views. The proposed method uses a graph structure that is robust enough to represent any detected moving objects by defining their vertices and edges to determine their relationships. By evaluating these object features, represented as a set of attributes in a graph, we can perform lightweight multiple object detection using several cameras, as well as performing object tracking within each camera's field of view and between two cameras. By evaluating each vertex hierarchically as a subgraph, we can further observe the features of the detected object and perform automatic separation of occluding objects. Experimental results show that the proposed method would improve the accuracy of object tracking by reducing the occurrences of incorrect identification compared to individual camera-based tracking.

  • An SBL-Based Coherent Source Localization Method Using Virtual Array Output Open Access

    Zeyun ZHANG  Xiaohuan WU  Chunguo LI  Wei-Ping ZHU  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2019/05/16
      Vol:
    E102-B No:11
      Page(s):
    2151-2158

    Direction of arrival (DOA) estimation as a fundamental issue in array signal processing has been extensively studied for many applications in military and civilian fields. Many DOA estimation algorithms have been developed for different application scenarios such as low signal-to-noise ratio (SNR), limited snapshots, etc. However, there are still some practical problems that make DOA estimation very difficult. One of them is the correlation between sources. In this paper, we develop a sparsity-based method to estimate the DOA of coherent signals with sparse linear array (SLA). We adopt the off-grid signal model and solve the DOA estimation problem in the sparse Bayesian learning (SBL) framework. By considering the SLA as a ‘missing sensor’ ULA, our proposed method treats the output of the SLA as a partial output of the corresponding virtual uniform linear array (ULA) to make full use of the expanded aperture character of the SLA. Then we employ the expectation-maximization (EM) method to update the hyper-parameters and the output of the virtual ULA in an iterative manner. Numerical results demonstrate that the proposed method has a better performance in correlated signal scenarios than the reference methods in comparison, confirming the advantage of exploiting the extended aperture feature of the SLA.

  • A Highly Efficient Wideband Two-Dimensional Direction Estimation Method with L-Shaped Microphone Array

    Bandhit SUKSIRI  Masahiro FUKUMOTO  

     
    PAPER-Digital Signal Processing

      Vol:
    E102-A No:11
      Page(s):
    1457-1472

    This paper presents an efficient wideband two-dimensional direction-of-arrival (DOA) estimation for an L-shaped microphone array. We propose a way to construct a wideband sample cross-correlation matrix without any process of DOA preliminary estimation, such as beamforming technique, by exploiting sample cross-correlation matrices of two different frequencies for all frequency bins. Subsequently, wideband DOAs can be estimated by using this wideband matrix along with a scheme of estimating DOA in a narrowband subspace method. Therefore, a contribution of our study is providing an alternative framework for recent narrowband subspace methods to estimating the DOA of wideband sources directly. It means that this framework enables cutting-edge techniques in the existing narrowband subspace methods to implement the wideband direction estimation for reducing the computational complexity and facilitating the estimation algorithm. Theoretical analysis and effectiveness of the proposed method are substantiated through numerical simulations and experiments, which are performed in reverberating environments. The results show that performance of the proposed method performs better than others over a range of signal-to-noise ratio with just a few microphones. All these advantages make the proposed method a powerful tool for navigation systems based on acoustic signal processing.

  • Improved LDA Model for Credibility Evaluation of Online Product Reviews

    Xuan WANG  Bofeng ZHANG  Mingqing HUANG  Furong CHANG  Zhuocheng ZHOU  

     
    PAPER-Data Engineering, Web Information Systems

      Pubricized:
    2019/08/22
      Vol:
    E102-D No:11
      Page(s):
    2148-2158

    When individuals make a purchase from online sources, they may lack first-hand knowledge of the product. In such cases, they will judge the quality of the item by the reviews other consumers have posted. Therefore, it is significant to determine whether comments about a product are credible. Most often, conventional research on comment credibility has employed supervised machine learning methods, which have the disadvantage of needing large quantities of training data. This paper proposes an unsupervised method for judging comment credibility based on the Biterm Sentiment Latent Dirichlet Allocation (BS-LDA) model. Using this approach, first we derived some distributions and calculated each comment's credibility score via them. A comment's credibility was judged based on whether it achieved a threshold score. Our experimental results using comments from Amazon.com demonstrated that the overall performance of our approach can play an important role in determining the credibility of comments in some situation.

  • QSL: A Specification Language for E-Questionnaire, E-Testing, and E-Voting Systems

    Yuan ZHOU  Yuichi GOTO  Jingde CHENG  

     
    PAPER-Data Engineering, Web Information Systems

      Pubricized:
    2019/08/19
      Vol:
    E102-D No:11
      Page(s):
    2159-2175

    Many kinds of questionnaires, testing, and voting are performed in some completely electronic ways to do questions and answers on the Internet as Web applications, i.e. e-questionnaire systems, e-testing systems, and e-voting systems. Because there is no unified communication tool among the stakeholders of e-questionnaire, e-testing, and e-voting systems, until now, all the e-questionnaire, e-testing, and e-voting systems are designed, developed, used, and maintained in various ad hoc ways. As a result, the stakeholders are difficult to communicate to implement the systems, because there is neither an exhaustive requirement list to have a grasp of the overall e-questionnaire, e-testing, and e-voting systems nor a standardized terminology for these systems to avoid ambiguity. A general-purpose specification language to provide a unified description way for specifying various e-questionnaire, e-testing, and e-voting systems can solve the problems such that the stakeholders can refer to and use the complete requirements and standardized terminology for better communications, and can easily and unambiguously specify all the requirements of systems and services of e-questionnaire, e-testing, and e-voting, even can implement the systems. In this paper, we propose the first specification language, named “QSL,” with a standardized, consistent, and exhaustive list of requirements for specifying various e-questionnaire, e-testing, and e-voting systems such that the specifications can be used as the precondition of automatically generating e-questionnaire, e-testing, and e-voting systems. The paper presents our design addressing that QSL can specify all the requirements of various e-questionnaire, e-testing, and e-voting systems in a structured way, evaluates its effectiveness, performs real applications using QSL in case of e-questionnaire, e-testing, and e-voting systems, and shows various QSL applications for providing convenient QSL services to stakeholders.

481-500hit(5768hit)