The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] IR(5768hit)

301-320hit(5768hit)

  • An Algebraic Approach to Verifying Galois-Field Arithmetic Circuits with Multiple-Valued Characteristics

    Akira ITO  Rei UENO  Naofumi HOMMA  

     
    PAPER-Logic Design

      Pubricized:
    2021/04/28
      Vol:
    E104-D No:8
      Page(s):
    1083-1091

    This study presents a formal verification method for Galois-field (GF) arithmetic circuits with the characteristics of more than two values. The proposed method formally verifies the correctness of circuit functionality (i.e., the input-output relations given as GF-polynomials) by checking the equivalence between a specification and a gate-level netlist. We represent a netlist using simultaneous algebraic equations and solve them based on a novel polynomial reduction method that can be efficiently applied to arithmetic over extension fields $mathbb{F}_{p^m}$, where the characteristic p is larger than two. By using the reverse topological term order to derive the Gröbner basis, our method can complete the verification, even when a target circuit includes bugs. In addition, we introduce an extension of the Galois-Field binary moment diagrams to perform the polynomial reductions faster. Our experimental results show that the proposed method can efficiently verify practical $mathbb{F}_{p^m}$ arithmetic circuits, including those used in modern cryptography. Moreover, we demonstrate that the extended polynomial reduction technique can enable verification that is up to approximately five times faster than the original one.

  • Minimax Design of Sparse IIR Filters Using Sparse Linear Programming Open Access

    Masayoshi NAKAMOTO  Naoyuki AIKAWA  

     
    PAPER-Digital Signal Processing

      Pubricized:
    2021/02/15
      Vol:
    E104-A No:8
      Page(s):
    1006-1018

    Recent trends in designing filters involve development of sparse filters with coefficients that not only have real but also zero values. These sparse filters can achieve a high performance through optimizing the selection of the zero coefficients and computing the real (non-zero) coefficients. Designing an infinite impulse response (IIR) sparse filter is more challenging than designing a finite impulse response (FIR) sparse filter. Therefore, studies on the design of IIR sparse filters have been rare. In this study, we consider IIR filters whose coefficients involve zero value, called sparse IIR filter. First, we formulate the design problem as a linear programing problem without imposing any stability condition. Subsequently, we reformulate the design problem by altering the error function and prepare several possible denominator polynomials with stable poles. Finally, by incorporating these methods into successive thinning algorithms, we develop a new design algorithm for the filters. To demonstrate the effectiveness of the proposed method, its performance is compared with that of other existing methods.

  • A Novel Multi-AP Diversity for Highly Reliable Transmissions in Wireless LANs

    Toshihisa NABETANI  Masahiro SEKIYA  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Pubricized:
    2021/01/08
      Vol:
    E104-B No:7
      Page(s):
    913-921

    With the development of the IEEE 802.11 standard for wireless LANs, there has been an enormous increase in the usage of wireless LANs in factories, plants, and other industrial environments. In industrial applications, wireless LAN systems require high reliability for stable real-time communications. In this paper, we propose a multi-access-point (AP) diversity method that contributes to the realization of robust data transmissions toward realization of ultra-reliable low-latency communications (URLLC) in wireless LANs. The proposed method can obtain a diversity effect of multipaths with independent transmission errors and collisions without modification of the IEEE 802.11 standard or increasing overhead of communication resources. We evaluate the effects of the proposed method by numerical analysis, develop a prototype to demonstrate its feasibility, and perform experiments using the prototype in a factory wireless environment. These numerical evaluations and experiments show that the proposed method increases reliability and decreases transmission delay.

  • Alleviating File System Journaling Problem in Containers for DBMS Consolidation

    Asraa ABDULRAZAK ALI MARDAN  Kenji KONO  

     
    PAPER-Software System

      Pubricized:
    2021/04/01
      Vol:
    E104-D No:7
      Page(s):
    931-940

    Containers offer a lightweight alternative over virtual machines and become a preferable choice for application consolidation in the clouds. However, the sharing of kernel components can violate the I/O performance and isolation in containers. It is widely recognized that file system journaling has terrible performance side effects in containers, especially when consolidating database management systems (DBMSs). The sharing of journaling modules among containers causes performance dependency among them. This dependency violates resource consumption enforced by the resource controller, and degrades I/O performance due to the contention of the journaling module. The operating system developers have been working on novel designs of file systems or new journaling mechanisms to solve the journaling problems. This paper shows that it is possible to overcome journaling problems without re-designing file systems or implementing a new journaling method. A careful configuration of containers in existing file systems can gracefully solve the problems. Our recommended configuration consists of 1) per-container journaling by presenting each container with a virtual block device to have its own journaling module, and 2) accounting journaling I/Os separately for each container. Our experimental results show that our configuration resolves journaling-related problems, improves MySQL performance by 3.4x, and achieves reasonable performance isolation among containers.

  • Novel Threshold Circuit Technique and Its Performance Analysis on Nanowatt Vibration Sensing Circuits for Millimeter-Sized Wireless Sensor Nodes

    Toshishige SHIMAMURA  Hiroki MORIMURA  

     
    PAPER

      Pubricized:
    2021/01/13
      Vol:
    E104-C No:7
      Page(s):
    272-279

    A new threshold circuit technique is proposed for a vibration sensing circuit that operates at a nanowatt power level. The sensing circuits that use sample-and-hold require a clock signal, and they consume power to generate a signal. In the use of a Schmitt trigger circuit that does not use a clock signal, a sink current flows when thresholding the analog signal output. The requirements for millimeter-sized wireless sensor nodes are an average power on the order of a nanowatt and a signal transition time of less than 1 ms. To meet these requirements, our circuit limits the sink current with a nanoampere-level current source. The chattering caused by current limiting is suppressed by feeding back the change in output voltage to the limiting current. The increase in the signal transition time that is caused by current limiting is reduced by accelerating the discharge of the load capacitance. For a test chip fabricated in the 0.35-µm CMOS process, the proposed threshold circuits operate without chattering and the average powers are 0.7-3 nW. The signal transition times are estimated in a circuit simulation to be 65-97 µs. The proposed circuit has 1/150th the power-delay product with no time interval of the sensing operation under the condition that the time interval is 1s. These results indicate that, the proposed threshold circuits are suitable for vibration sensing in millimeter-sized wireless sensor nodes.

  • An Intent-Based System Configuration Design for IT/NW Services with Functional and Quantitative Constraints Open Access

    Takuya KUWAHARA  Takayuki KURODA  Takao OSAKI  Kozo SATODA  

     
    PAPER

      Pubricized:
    2021/02/04
      Vol:
    E104-B No:7
      Page(s):
    791-804

    Network service providers need to appropriately design systems and carefully configuring the settings and parameters to ensure that the systems keep running consistently and deliver the desired services. This can be a heavy and error-prone task. Intent-based system design methods have been developed to help with such tasks. These methods receive service-level requirements and generate service configurations to fulfill the given requirements. One such method is search-based system design, which can flexibly generate systems of various architectures. However, it has difficulty dealing with constraints on the quantitative parameters of systems, e.g., disk volume, RAM size, and QoS. To deal with practical cases, intent-based system design engines need to be able to handle quantitative parameters and constraints. In this work, we propose a new intent-based system design method based on search-based design that augments search states with quantitative constraints. Our method can generate a system that meets both functional and quantitative service requirements by combining a search-based design method with constraint checking. Experimental results show that our method can automatically generate a system that fulfills all given requirements within a reasonable computation time.

  • Heuristic Service Chain Construction Algorithm Based on VNF Performances for Optimal Data Transmission Services

    Yasuhito SUMI  Takuji TACHIBANA  

     
    PAPER

      Pubricized:
    2021/01/08
      Vol:
    E104-B No:7
      Page(s):
    817-828

    In network function virtualization (NFV) environments, service chaining is an emerging technology that enables network operators to provide network service dynamically and flexibly by using virtual network function (VNF). In the service chaining, a service chain is expected to be constructed based on VNF performances such as dependences among VNFs and traffic changing effects in VNFs. For achieving optimal data transmission services in NFV environments, we focus on the optimal service chain construction based on VNF performances so that both the maximum amount of traffic on links and the total number of VNF instances are decreased. In this paper, at first, an optimization problem is formulated for determining placements of VNFs and a route for each service chain. The service chains can be constructed by solving this optimization problem with an optimization software or meta-heuristic algorithm. Then, for the optimization problem, we propose a heuristic service chain construction algorithm. By using our proposed algorithm, the service chains can be constructed appropriately more quickly. We evaluate the performance of the proposed heuristic algorithm with simulation, and we investigate the effectiveness of the heuristic algorithm from the performance comparison. From some numerical examples, we show that the proposed heuristic algorithm is effective to decrease the amount of traffic and the number of VNF instances. Moreover, it is shown that our proposed heuristic algorithm can construct service chains quickly.

  • A Harvested Power-Oriented SWIPT Scheme in MIMO Communication Systems with Non-Linear Harvesters

    Yan CHEN  Chen LIU  Mujun QIAN  Yu HUANG  Wenfeng SUN  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2021/01/18
      Vol:
    E104-B No:7
      Page(s):
    893-902

    This paper studies a harvested power-oriented simultaneous wireless information and power transfer (SWIPT) scheme over multiple-input multiple-output (MIMO) interference channels in which energy harvesting (EH) circuits exhibit nonlinearity. To maximize the power harvested by all receivers, we propose an algorithm to jointly optimize the transmit beamforming vectors, power splitting (PS) ratios and the receive decoding vectors. As all variables are coupled to some extent, the problem is non-convex and hard to solve. To deal with this non-convex problem, an iterative optimization method is proposed. When two variables are fixed, the third variable is optimized. Specifically, when the transmit beamforming vectors are optimized, the transferred objective function is the sum of several fractional functions. Non-linear sum-of-ratios programming is used to solve the transferred objective function. The convergence and advantage of our proposed scheme compared with traditional EH circuits are validated by simulation results.

  • Design Method of Variable-Latency Circuit with Tunable Approximate Completion-Detection Mechanism

    Yuta UKON  Shimpei SATO  Atsushi TAKAHASHI  

     
    PAPER

      Pubricized:
    2020/12/21
      Vol:
    E104-C No:7
      Page(s):
    309-318

    Advanced information-processing services such as computer vision require a high-performance digital circuit to perform high-load processing at high speed. To achieve high-speed processing, several image-processing applications use an approximate computing technique to reduce idle time of the circuit. However, it is difficult to design the high-speed image-processing circuit while controlling the error rate so as not to degrade service quality, and this technique is used for only a few applications. In this paper, we propose a method that achieves high-speed processing effectively in which processing time for each task is changed by roughly detecting its completion. Using this method, a high-speed processing circuit with a low error rate can be designed. The error rate is controllable, and a circuit design method to minimize the error rate is also presented in this paper. To confirm the effectiveness of our proposal, a ripple-carry adder (RCA), 2-dimensional discrete cosine transform (2D-DCT) circuit, and histogram of oriented gradients (HOG) feature calculation circuit are evaluated. Effective clock periods of these circuits obtained by our method with around 1% error rate are improved about 64%, 6%, and 12%, respectively, compared with circuits without error. Furthermore, the impact of the miscalculation on a video monitoring service using an object detection application is investigated. As a result, more than 99% of detection points required to be obtained are detected, and it is confirmed the miscalculation hardly degrades the service quality.

  • A High-Speed PWM-Modulated Transceiver Network for Closed-Loop Channel Topology

    Kyongsu LEE  Jae-Yoon SIM  

     
    BRIEF PAPER

      Pubricized:
    2020/12/18
      Vol:
    E104-C No:7
      Page(s):
    350-354

    This paper proposes a pulse-width modulated (PWM) signaling[1] to send clock and data over a pair of channels for in-vehicle network where a closed chain of point-to-point (P2P) interconnection between electronic control units (ECU) has been established. To improve detection speed and margin of proposed receiver, we also proposed a novel clock and data recovery (CDR) scheme with 0.5 unit-interval (UI) tuning range and a PWM generator utilizing 10 equally-spaced phases. The feasibility of proposed system has been proved by successfully detecting 1.25 Gb/s data delivered via 3 ECUs and inter-channels in 180 nm CMOS technology. Compared to previous study, the proposed system achieved better efficiency in terms of power, cost, and reliability.

  • Design Method for Differential Rectifier Circuit Capable of Rapidly Charging Storage Capacitor

    Daiki FUJII  Masaya TAMURA  

     
    PAPER-Microwaves, Millimeter-Waves

      Pubricized:
    2020/12/04
      Vol:
    E104-C No:7
      Page(s):
    355-362

    This study proposes a design method for a rectifier circuit that can be rapidly charged by focusing on the design-load value of the circuit and the load fluctuation of a storage capacitor. The design-load value is suitable for rapidly charging the capacitor. It can be obtained at the lowest reflection condition and estimated according to the circuit design. This is a conventional method for designing the rectifier circuit using the optimum load. First, we designed rectifier circuits for the following three cases. The first circuit design uses a load set to 10 kΩ. The second design uses a load of 30 kΩ that is larger than the optimum load. The third design utilizes a load of 3 kΩ. Then, we measure the charging time to design the capacitor on each circuit. Consequently, the results show that the charge time could be shortened by employing the design-load value lower than that used in the conventional design. Finally, we discuss herein whether this design method can be applied regardless of the rectifier circuit topology.

  • Single Image Dehazing Based on Weighted Variational Regularized Model

    Hao ZHOU  Hailing XIONG  Chuan LI  Weiwei JIANG  Kezhong LU  Nian CHEN  Yun LIU  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2021/04/06
      Vol:
    E104-D No:7
      Page(s):
    961-969

    Image dehazing is of great significance in computer vision and other fields. The performance of dehazing mainly relies on the precise computation of transmission map. However, the computation of the existing transmission map still does not work well in the sky area and is easily influenced by noise. Hence, the dark channel prior (DCP) and luminance model are used to estimate the coarse transmission in this work, which can deal with the problem of transmission estimation in the sky area. Then a novel weighted variational regularization model is proposed to refine the transmission. Specifically, the proposed model can simultaneously refine the transmittance and restore clear images, yielding a haze-free image. More importantly, the proposed model can preserve the important image details and suppress image noise in the dehazing process. In addition, a new Gaussian Adaptive Weighted function is defined to smooth the contextual areas while preserving the depth discontinuity edges. Experiments on real-world and synthetic images illustrate that our method has a rival advantage with the state-of-art algorithms in different hazy environments.

  • Cyclic LRCs with Availability from Linearized Polynomials

    Pan TAN  Zhengchun ZHOU   Haode YAN  Yong WANG  

     
    LETTER-Coding Theory

      Pubricized:
    2021/01/18
      Vol:
    E104-A No:7
      Page(s):
    991-995

    Locally repairable codes (LRCs) with availability have received considerable attention in recent years since they are able to solve many problems in distributed storage systems such as repairing multiple node failures and managing hot data. Constructing LRCs with locality r and availability t (also called (r, t)-LRCs) with new parameters becomes an interesting research subject in coding theory. The objective of this paper is to propose two generic constructions of cyclic (r, t)-LRCs via linearized polynomials over finite fields. These two constructions include two earlier ones of cyclic LRCs from trace functions and truncated trace functions as special cases and lead to LRCs with new parameters that can not be produced by earlier ones.

  • Low-Power Fast Partial Firmware Update Technique of On-Chip Flash Memory for Reliable Embedded IoT Microcontroller

    Jisu KWON  Moon Gi SEOK  Daejin PARK  

     
    PAPER

      Pubricized:
    2020/12/08
      Vol:
    E104-C No:6
      Page(s):
    226-236

    IoT devices operate with a battery and have embedded firmware in flash memory. If the embedded firmware is not kept up to date, there is a possibility of problems that cannot be linked with other IoT networks, so it is necessary to maintain the latest firmware with frequent updates. However, because firmware updates require developers and equipment, they consume manpower and time. Additionally, because the device must be active during the update, a low-power operation is not possible due to frequent flash memory access. In addition, if an unexpected interruption occurs during an update, the device is unavailable and requires a reliable update. Therefore, this paper aims to improve the reliability of updates and low-power operation by proposing a technique of performing firmware updates at high speed. In this paper, we propose a technique to update only a part of the firmware stored in nonvolatile flash memory without pre-processing to generate delta files. The firmware is divided into function blocks, and their addresses are collectively managed in a separate area called a function map. When updating the firmware, only the new function block to be updated is transmitted from the host downloader, and the bootloader proceeds with the update using the function block stored in the flash memory. Instead of transmitting the entire new firmware and writing it in the memory, using only function block reduces the amount of resources required for updating. Function-blocks can be called indirectly through a function map, so that the update can be completed by modifying only the function map regardless of the physical location. Our evaluation results show that the proposed technique effectively reduces the time cost, energy consumption, and additional memory usage overhead that can occur when updating firmware.

  • Uplink Frame Transmission with Functions of Adaptive Triggering and Resource Allocation of OFDMA in Interfering IEEE 802.11ax Wireless LANs

    Ryoichi TAKAHASHI  Yosuke TANIGAWA  Hideki TODE  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2020/12/09
      Vol:
    E104-B No:6
      Page(s):
    664-674

    In recent years, wireless LANs (WLANs) are closely deployed which means they interfere with each other. Mobile stations (MSs) like smart phones that connect to such WLANs are also increasing. In such interfering environments, radio interference frequency depends on MS position. In addition, as MSs and their applications become diverse, frame generation rates from MSs are also becoming various. Thus, sufficient frame transmission opportunities should be assigned to MSs regardless of their radio interference frequencies and frame generation rates. One key technology to deal with this issue is uplink orthogonal frequency division multiple access (OFDMA) transmission introduced in IEEE 802.11ax. However, existing works do not consider the differences of the interference frequencies and frame generation rates among MSs in an integrated manner. This paper proposes an uplink frame transmission method for interfering WLAN environments that effectively uses the OFDMA transmission to assign enough transmission opportunities to MSs regardless of their own interference frequencies and frame generation rates, while efficiently using the channel resource. Considering the combined problem, this proposed method allocates resource units (RUs), created by dividing the channel, to MSs. In addition, based on a mathematical analysis of required frame transmission duration, the proposed method flexibly selects the OFDMA transmission or conventional frame transmission with CSMA/CA, which is also not considered in the existing works.

  • Graph Degree Heterogeneity Facilitates Random Walker Meetings

    Yusuke SAKUMOTO  Hiroyuki OHSAKI  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2020/12/14
      Vol:
    E104-B No:6
      Page(s):
    604-615

    Various graph algorithms have been developed with multiple random walks, the movement of several independent random walkers on a graph. Designing an efficient graph algorithm based on multiple random walks requires investigating multiple random walks theoretically to attain a deep understanding of their characteristics. The first meeting time is one of the important metrics for multiple random walks. The first meeting time on a graph is defined by the time it takes for multiple random walkers to meet at the same node in a graph. This time is closely related to the rendezvous problem, a fundamental problem in computer science. The first meeting time of multiple random walks has been analyzed previously, but many of these analyses focused on regular graphs. In this paper, we analyze the first meeting time of multiple random walks in arbitrary graphs and clarify the effects of graph structures on expected values. First, we derive the spectral formula of the expected first meeting time on the basis of spectral graph theory. Then, we examine the principal component of the expected first meeting time using the derived spectral formula. The clarified principal component reveals that (a) the expected first meeting time is almost dominated by $n/(1+d_{ m std}^2/d_{ mavg}^2)$ and (b) the expected first meeting time is independent of the starting nodes of random walkers, where n is the number of nodes of the graph. davg and dstd are the average and the standard deviation of weighted node degrees, respectively. Characteristic (a) is useful for understanding the effect of the graph structure on the first meeting time. According to the revealed effect of graph structures, the variance of the coefficient dstd/davg (degree heterogeneity) for weighted degrees facilitates the meeting of random walkers.

  • Biofuel Cell Using Cellulose Nanofiber as Fuel Supply

    Ryutaro TANAKA  Mitsuhiro OGAWA  Satomitsu IMAI  

     
    BRIEF PAPER

      Pubricized:
    2020/12/01
      Vol:
    E104-C No:6
      Page(s):
    194-197

    In this study, we devised a biofuel cell (BFC) by impregnating sheet-like cellulose nanofiber (CNF) with liquid fuel (fructose) and sandwiching it with the electrodes, making the structure simple and compact. CNF was considered as a suitable material for BFC because it is biocompatible, has a large specific surface area, and exhibits excellent properties as a catalyst and an adsorbent. In this BFC device, graphene-coated carbon fiber woven cloth (GCFC) was used as the material for preparing the electrodes, and the amount of enzyme modification on the surface of each electrode was enhanced. Further, as the distance between the electrodes was same as the thickness of the sheet-shaped CNF, it facilitated the exchange of protons between the electrodes. Moreover, the cathode, which requires an oxidation reaction, was exposed to the atmosphere to enhance the oxygen uptake. The maximum power density of the CNF-type BFC was recorded as 114.5 µW/cm2 at a voltage of 293 mV. This is more than 1.5 times higher than that of the liquid-fuel-type BFC. When measured after 24 h, the maximum power density was recorded as 44.9 µW/cm2 at 236 mV, and the output was maintained at 39% of that observed at the beginning of the measurement. However, it is not the case with general BFCs, where the power generation after 24 h is less than 5%. Therefore, the CNF-type BFCs have a longer lifespan and are fuel efficient.

  • Image Enhancement in 26GHz-Band 1-Bit Direct Digital RF Transmitter Using Manchester Coding

    Junhao ZHANG  Masafumi KAZUNO  Mizuki MOTOYOSHI  Suguru KAMEDA  Noriharu SUEMATSU  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2020/12/03
      Vol:
    E104-B No:6
      Page(s):
    654-663

    In this paper, we propose a direct digital RF transmitter with a 1-bit band-pass delta-sigma modulator (BP-DSM) that uses high order image components of the 7th Nyquist zone in Manchester coding for microwave and milimeter wave application. Compared to the conventional non-return-to-zero (NRZ) coding, in which the high order image components of 1-bit BP-DSM attenuate severely in the form of sinc function, the proposed 1-bit direct digital RF transmitter in Manchester code can improve the output power and signal-to-noise ratio (SNR) of the image components at specific (4n-1)th and (4n-2)th Nyquist Zone, which is confirmed by calculating of the power spectral density. Measurements are made to compare three types of 1-bit digital-to-analog converter (DAC) signal in output power and SNR; NRZ, 50% duty return-to-zero (RZ) and Manchester coding. By using 1 Vpp/8Gbps DAC output, 1-bit signals in Manchester coding show the highest output power of -20.3dBm and SNR of 40.3dB at 7th Nyquist Zone (26GHz) in CW condition. As a result, compared to NRZ and RZ coding, at 7th Nyquist zone, the output power is improved by 8.1dB and 6dB, respectively. Meanwhile, the SNR is improved by 7.6dB and 4.9dB, respectively. In 5Mbps-QPSK condition, 1-bit signals in Manchester code show the lowest error vector magnitude (EVM) of 2.4% and the highest adjacent channel leakage ratio (ACLR) of 38.2dB with the highest output power of -18.5dBm at 7th Nyquist Zone (26GHz), respectively, compared to the NRZ and 50% duty RZ coding. The measurement and simulation results of the image component of 1-bit signals at 7th Nyquist Zone (26GHz) are consistent with the calculation results.

  • Security-Reliability Tradeoff for Joint Relay-User Pair and Friendly Jammer Selection with Channel Estimation Error in Internet-of-Things

    Guangna ZHANG  Yuanyuan GAO  Huadong LUO  Xiaochen LIU  Nan SHA  Kui XU  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2020/12/22
      Vol:
    E104-B No:6
      Page(s):
    686-695

    In this paper, we explore the physical layer security of an Internet of Things (IoT) network comprised of multiple relay-user pairs in the presence of multiple malicious eavesdroppers and channel estimation error (CEE). In order to guarantee secure transmission with channel estimation error, we propose a channel estimation error oriented joint relay-user pair and friendly jammer selection (CEE-JRUPaFJS) scheme to improve the physical layer security of IoT networks. For the purpose of comparison, the channel estimation error oriented traditional round-robin (CEE-TRR) scheme and the channel estimation error oriented traditional pure relay-user pair selection (CEE-TPRUPS) scheme are considered as benchmark schemes. The exact closed-form expressions of outage probability (OP) and intercept probability (IP) for the CEE-TRR and CEE-TPRUPS schemes as well as the CEE-JRUPaFJS scheme are derived over Rayleigh fading channels, which are employed to characterize network reliability and security, respectively. Moreover, the security-reliability tradeoff (SRT) is analyzed as a metric to evaluate the tradeoff performance of CEE-JRUPaFJS scheme. It is verified that the proposed CEE-JRUPaFJS scheme is superior to both the CEE-TRR and CEE-TPRUPS schemes in terms of SRT, which demonstrates our proposed CEE-JRUPaFJS scheme are capable of improving the security and reliability performance of IoT networks in the face of multiple eavesdroppers. Moreover, as the number of relay-user pairs increases, CEE-TPRUPS and CEE-JRUPaFJS schemes offer significant increases in SRT. Conversely, with an increasing number of eavesdroppers, the SRT of all these three schemes become worse.

  • On the Efficacy of Scan Chain Grouping for Mitigating IR-Drop-Induced Test Data Corruption

    Yucong ZHANG  Stefan HOLST  Xiaoqing WEN  Kohei MIYASE  Seiji KAJIHARA  Jun QIAN  

     
    PAPER-Dependable Computing

      Pubricized:
    2021/03/08
      Vol:
    E104-D No:6
      Page(s):
    816-827

    Loading test vectors and unloading test responses in shift mode during scan testing cause many scan flip-flops to switch simultaneously. The resulting shift switching activity around scan flip-flops can cause excessive local IR-drop that can change the states of some scan flip-flops, leading to test data corruption. A common approach solving this problem is partial-shift, in which multiple scan chains are formed and only one group of the scan chains is shifted at a time. However, previous methods based on this approach use random grouping, which may reduce global shift switching activity, but may not be optimized to reduce local shift switching activity, resulting in remaining high risk of test data corruption even when partial-shift is applied. This paper proposes novel algorithms (one optimal and one heuristic) to group scan chains, focusing on reducing local shift switching activity around scan flip-flops, thus reducing the risk of test data corruption. Experimental results on all large ITC'99 benchmark circuits demonstrate the effectiveness of the proposed optimal and heuristic algorithms as well as the scalability of the heuristic algorithm.

301-320hit(5768hit)