The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] IR(5768hit)

281-300hit(5768hit)

  • Per-Pixel Water Detection on Surfaces with Unknown Reflectance

    Chao WANG  Michihiko OKUYAMA  Ryo MATSUOKA  Takahiro OKABE  

     
    PAPER

      Pubricized:
    2021/07/06
      Vol:
    E104-D No:10
      Page(s):
    1555-1562

    Water detection is important for machine vision applications such as visual inspection and robot motion planning. In this paper, we propose an approach to per-pixel water detection on unknown surfaces with a hyperspectral image. Our proposed method is based on the water spectral characteristics: water is transparent for visible light but translucent/opaque for near-infrared light and therefore the apparent near-infrared spectral reflectance of a surface is smaller than the original one when water is present on it. Specifically, we use a linear combination of a small number of basis vector to approximate the spectral reflectance and estimate the original near-infrared reflectance from the visible reflectance (which does not depend on the presence or absence of water) to detect water. We conducted a number of experiments using real images and show that our method, which estimates near-infrared spectral reflectance based on the visible spectral reflectance, has better performance than existing techniques.

  • 5G Evolution and Beyond Open Access

    Erik DAHLMAN  Gunnar MILDH  Stefan PARKVALL  Patrik PERSSON  Gustav WIKSTRÖM  Hideshi MURAI  

     
    INVITED PAPER

      Pubricized:
    2021/03/08
      Vol:
    E104-B No:9
      Page(s):
    984-991

    The paper provides an overview of the current status of the 5G evolution as well as a research outlook on the future wireless-access evolution towards 6G.

  • Field Trial of Dynamic Mode Switching for 5G New Radio Sidelink Communications towards Application to Truck Platooning Open Access

    Manabu MIKAMI  Kohei MOTO  Koichi SERIZAWA  Hitoshi YOSHINO  

     
    PAPER

      Pubricized:
    2021/03/17
      Vol:
    E104-B No:9
      Page(s):
    1035-1045

    Fifth generation mobile communication system (5G) mobile operators need to explore new use cases and/or applications together with vertical industries, the industries that are potential users of 5G, in order to fully exploit the new 5G capabilities in terms of its application. Vehicle-to-Everything (V2X) communications for platooning are considered to be one of new 5G use cases requiring low-latency and ultra-reliability are required. This paper presents our field trial of dynamic mode switching for 5G New Radio (NR) based V2X sidelink communications towards application to truck platooning. The authors build a field trial environment, for V2X communications of truck platooning, with actual large-size trucks and a prototype system employing 5G NR technologies, and performed some field trials in rural areas. In this paper, we introduce the 5G NR-V2X prototype system. Its most distinctive characteristic is that the prototype system is equipped with vehicle-to-vehicle (V2V) Direct communication radio interface (i.e., sidelink), in addition to the traditional radio interfaces between base station (BS) and user equipment (UE), i.e., downlink and uplink. Moreover, it is also most distinctive that the sidelink (SL) interface supports a new function of dynamic mode switching between two modes of BS In-Coverage mode (SL Mode-1) and BS Out-of-Coverage mode (SL Mode-2) in order to achieve seamless V2V communications between BS in-coverage area and BS out-of-coverage area. Then, we present the evaluation results on over-the-air latency performance on the V2V Direct communication of the prototype using SL dynamic mode switching with two experimental base station antenna sites in a public express highway environment towards application to truck platooning. The results demonstrate that our developed the SL dynamic mode switching achieves the seamless V2V Direct communications between in-coverage area and out-of-coverage area.

  • Conditional Wasserstein Generative Adversarial Networks for Rebalancing Iris Image Datasets

    Yung-Hui LI  Muhammad Saqlain ASLAM  Latifa Nabila HARFIYA  Ching-Chun CHANG  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2021/06/01
      Vol:
    E104-D No:9
      Page(s):
    1450-1458

    The recent development of deep learning-based generative models has sharply intensified the interest in data synthesis and its applications. Data synthesis takes on an added importance especially for some pattern recognition tasks in which some classes of data are rare and difficult to collect. In an iris dataset, for instance, the minority class samples include images of eyes with glasses, oversized or undersized pupils, misaligned iris locations, and iris occluded or contaminated by eyelids, eyelashes, or lighting reflections. Such class-imbalanced datasets often result in biased classification performance. Generative adversarial networks (GANs) are one of the most promising frameworks that learn to generate synthetic data through a two-player minimax game between a generator and a discriminator. In this paper, we utilized the state-of-the-art conditional Wasserstein generative adversarial network with gradient penalty (CWGAN-GP) for generating the minority class of iris images which saves huge amount of cost of human labors for rare data collection. With our model, the researcher can generate as many iris images of rare cases as they want and it helps to develop any deep learning algorithm whenever large size of dataset is needed.

  • New Almost Periodic Complementary Pairs

    Jiali WU  Rong LUO  Honglei WEI  Yanfeng QI  

     
    LETTER-Communication Theory and Signals

      Pubricized:
    2021/03/05
      Vol:
    E104-A No:9
      Page(s):
    1361-1364

    In this letter, we give a recursive construction of q-ary almost periodic complementary pairs (APCPs) based on an interleaving technique of sequences and Kronercker product. Based on this construction, we obtain new quaternary APCPs with new lengths.

  • Field Evaluation of 5G Low Latency and High Reliability Vehicle-to-Vehicle Direct Communication for Application to Truck Platooning

    Manabu MIKAMI  Koichi SERIZAWA  Kohei MOTO  Hitoshi YOSHINO  

     
    PAPER

      Pubricized:
    2021/03/17
      Vol:
    E104-B No:9
      Page(s):
    1026-1034

    Fifth generation mobile communication system (5G) mobile operators need to explore new use cases and/or applications together with vertical industries, the industries which are potential users of 5G, in order to fully exploit the new 5G capabilities in terms of its application. Vehicular communications for platooning are considered to be one of new use cases of 5G whose low-latency and ultra-reliability are required. This paper presents our field evaluations on latency and reliability performance of 5G V2V Direct communication towards application to truck platooning. The authors build a field experimental environment, for V2X communications of truck platooning, with actual large-size trucks and a prototype system employing 5G New Radio (NR) technologies, and performed some field experiments in rural areas. In this paper, we introduce the 5G NR-V2X prototype system. Its most distinctive feature is that the prototype system is equipped with V2V Direct communication radio interface (i.e., sidelink), in addition to the traditional radio interfaces between BS and UE (i.e., downlink and uplink). Then, we present the field evaluation results of radio propagation environment results and over-the-air transmission performance of latency and reliability characteristics on the V2V Direct communication of the prototype in real public express highway environment including tunnel area as well as tunnel outside area, in order to assess 5G NR-V2X system applying to truck platooning. The radio propagation and the latency performance evaluation results clarify that the latency performance is degraded due to Hybrid Automatic Repeat reQuest (HARQ) retransmission at the outside of tunnel more possibly than the inside of tunnel, since larger path loss values can be observed at the outside of tunnel than the inside of tunnel, in V2V Direct communications of truck platooning. The over-the-air latency and reliability evaluation results confirm that it is important to set an appropriate maximum number of HARQ retransmissions since there is a trade-off problem in order to realize low latency and high reliability simultaneously.

  • A Virtual Pre-Connection Scheme Enabling Fast Connection to Local Spot Cell in Private Cellular Network

    Kazuo IBUKA  Hikaru KAWASAKI  Takeshi MATSUMURA  Fumihide KOJIMA  

     
    PAPER

      Pubricized:
    2021/03/08
      Vol:
    E104-B No:9
      Page(s):
    1129-1137

    In the 5th generation mobile communication system (5G), super high frequency (SHF) bands such as 28GHz will be used in many scenarios. In Japan, a local 5G working group has been established to apply advanced 5G technologies to private networks and is working to encourage local companies and municipalities to introduce new services for local needs. Meanwhile, the smaller size of the 28GHz band cells creates the difficulties when establishing deployment areas for homogeneous networks. In general, heterogeneous network approach with the combination of macro-cell and micro-cell have been considered practical and applied by the giant telecommunication operators. However, private network operators have difficulty in deploying both micro- and macro-cells due to the cost issue. Without the assistance of macro-cells, local spot cells with a small service area may not be able to start services while high-speed mobile users are staying in the service area. In this paper, we propose a virtual pre-connection scheme allowing fast connection to local spot cells without the assistance of macro-cells. In addition, we confirm that the proposed scheme can reduce the cell search time required when entering a local spot cell from 100 seconds or more to less than 1 second, and can reduce the loss of connection opportunities to local spot cells for high-speed mobile users.

  • Effects of Input Data Uncertainties on an Air Traffic Control Difficulty Index

    Sakae NAGAOKA  Mark BROWN  Daniel DELAHAYE  

     
    PAPER-Navigation, Guidance and Control Systems

      Pubricized:
    2021/03/22
      Vol:
    E104-B No:9
      Page(s):
    1188-1196

    Air traffic management (ATM) systems around the world are being modernized to accommodate shifts towards performance- and trajectory-based operations. These shifts will require new indices for safety, efficiency and complexity. The authors have been developing an index for evaluating air traffic control (ATC) difficulty that utilizes the relative positions and velocity vectors of aircraft pairs as input data. Prior to practical application of the index, it is necessary to understand the effects of input data error, i.e. errors in the positions and velocities of a pair of aircraft, on the estimated difficulty value. Two sensitivity analyses were therefore performed for a pair of aircraft cruising at constant speeds on intersecting linear tracks at the same altitude. Sensitivity analysis examines how uncertainty in inputs relates to uncertainty in outputs. Firstly, an analysis of propagation error was carried out. The formula of the propagation error at a certain point was derived based on the assumed input error, and the distribution of propagation error was investigated for all possible situations and compared with the distribution of difficulty values to clarify its characteristics. Secondly, a sensitivity analysis based on variance was carried out that evaluated the effect of each input parameter using a conditional variance value called the Sobol indices. Using a Monte Carlo method, we investigated the effect of each input parameter on the calculated difficulty value for all possible situations of aircraft pairs on intersecting trajectories. As a result, it was found that the parameter that most affects the difficulty value is the intersection angle of the trajectories.

  • Sum Rate Maximization for Cooperative NOMA with Hardware Impairments

    Xiao-yu WAN  Rui-fei CHANG  Zheng-qiang WANG  Zi-fu FAN  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2021/05/28
      Vol:
    E104-D No:9
      Page(s):
    1399-1405

    This paper investigates the sum rate (SR) maximization problem for downlink cooperative non-orthogonal multiple access (C-NOMA) systems with hardware impairments (HIs). The source node communicates with users via a half-duplex amplified-and-forward (HD-AF) relay with HIs. First, we derive the SR expression of the systems under HIs. Then, SR maximization problem is formulated under maximum power of the source, relay, and the minimum rate constraint of each user. As the original SR maximization problem is a non-convex problem, it is difficult to find the optimal resource allocation directly by tractional convex optimization method. We use variable substitution method to convert the non-convex SR maximization problem to an equivalent convex optimization problem. Finally, a joint power and rate allocation based on interior point method is proposed to maximize the SR of the systems. Simulation results show that the algorithm can improve the SR of the C-NOMA compared with the cooperative orthogonal multiple access (C-OMA) scheme.

  • Performance of Circular 32QAM/64QAM Schemes Using Frequency Domain Equalizer for DFT-Precoded OFDM

    Chihiro MORI  Miyu NAKABAYASHI  Mamoru SAWAHASHI  Teruo KAWAMURA  Nobuhiko MIKI  

     
    PAPER

      Pubricized:
    2021/03/17
      Vol:
    E104-B No:9
      Page(s):
    1054-1066

    This paper presents the average block error rate (BLER) performance of circular 32QAM and 64QAM schemes employing a frequency domain equalizer (FDE) for discrete Fourier transform (DFT)-precoded orthogonal frequency division multiplexing (OFDM) in multipath Rayleigh fading channels. The circular QAM scheme has an advantageous feature in that the fluctuation in the amplitude component is smaller than that for the cross or rectangular QAM scheme. Hence, focusing on the actual received signal-to-noise power ratio (SNR) taking into account a realistic peak-to-average power ratio (PAPR) measure called the cubic metric (CM), we compare the average BLER of the circular 32QAM and 64QAM schemes with those of cross 32QAM and rectangular 64QAM schemes, respectively. We investigate the theoretical throughput of various circular 32QAM and 64QAM schemes based on mutual information from the viewpoint of the minimum Euclidean distance. Link-level simulation results show that the circular 32QAM and 64QAM schemes with independent bit mapping for the phase and amplitude modulations achieves a lower required average received SNR considering the CM than that with the minimum Euclidean distance but with composite mapping of the phase and amplitude modulations. Through extensive link-level simulations, we show the potential benefit of the circular 32QAM and 64QAM schemes in terms of reducing the required average received SNR considering the CM that satisfies the target average BLER compared to the cross 32QAM or rectangular 64QAM scheme.

  • Base Station Cooperation Technologies Using 28GHz-Band Digital Beamforming in High-Mobility Environments Open Access

    Tatsuki OKUYAMA  Nobuhide NONAKA  Satoshi SUYAMA  Yukihiko OKUMURA  Takahiro ASAI  

     
    PAPER

      Pubricized:
    2021/03/23
      Vol:
    E104-B No:9
      Page(s):
    1009-1016

    The fifth-generation (5G) mobile communications system initially introduced massive multiple-input multiple-output (M-MIMO) with analog beamforming (BF) to compensate for the larger path-loss in millimeter-wave (mmW) bands. To solve a coverage issue and support high mobility of the mmW bands, base station (BS) cooperation technologies have been investigated in high-mobility environments. However, previous works assume one mobile station (MS) scenario and analog BF that does not suppress interference among MSs. In order to improve system performance in the mmW bands, fully digital BF that includes digital precoding should be employed to suppress the interference even when MSs travel in high mobility. This paper proposes two mmW BS cooperation technologies that are inter-baseband unit (inter-BBU) and intra-BBU cooperation for the fully digital BF. The inter-BBU cooperation exploits two M-MIMO antennas in two BBUs connected to one central unit by limited-bandwidth fronthaul, and the intra-BBU cooperates two M-MIMO antennas connected to one BBU with Doppler frequency shift compensation. This paper verifies effectiveness of the BS cooperation technologies by both computer simulations and outdoor experimental trials. First, it is shown that that the intra-BBU cooperation can achieve an excellent transmission performance in cases of two and four MSs moving at a velocity of 90km/h by computer simulations. Second, the outdoor experimental trials clarifies that the inter-BBU cooperation maintains the maximum throughput in a wider area than non-BS cooperation when only one MS moves at a maximum velocity of 120km/h.

  • Efficient DLT-Based Method for Solving PnP, PnPf, and PnPfr Problems

    Gaku NAKANO  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2021/06/17
      Vol:
    E104-D No:9
      Page(s):
    1467-1477

    This paper presents an efficient method for solving PnP, PnPf, and PnPfr problems, which are the problems of determining camera parameters from 2D-3D point correspondences. The proposed method is derived based on a simple usage of linear algebra, similarly to the classical DLT methods. Therefore, the new method is easier to understand, easier to implement, and several times faster than the state-of-the-art methods using Gröbner basis. Contrary to the existing Gröbner basis methods, the proposed method consists of three algorithms depending on the number of the points and the 3D point configuration. Experimental results show that the proposed method is as accurate as the state-of-the-art methods even in near-planar scenes while achieving up to three times faster.

  • Fabrication Process for Superconducting Digital Circuits Open Access

    Mutsuo HIDAKA  Shuichi NAGASAWA  

     
    INVITED PAPER

      Pubricized:
    2021/03/03
      Vol:
    E104-C No:9
      Page(s):
    405-410

    This review provides a current overview of the fabrication processes for superconducting digital circuits at CRAVITY (clean room for analog and digital superconductivity) at the National Institute of Advanced Industrial Science and Technology (AIST), Japan. CRAVITY routinely fabricates superconducting digital circuits using three types of fabrication processes and supplies several thousand chips to its collaborators each year. Researchers at CRAVITY have focused on improving the controllability and uniformity of device parameters and the reliability, which means reducing defects. These three aspects are important for the correct operation of large-scale digital circuits. The current technologies used at CRAVITY permit ±10% controllability over the critical current density (Jc) of Josephson junctions (JJs) with respect to the design values, while the critical current (Ic) uniformity is within 1σ=2% for JJs with areas exceeding 1.0 µm2 and the defect density is on the order of one defect for every 100,000 JJs.

  • Design and Fabrication of PTFE Substrate Integrated Waveguide Coupler by SR Direct Etching Open Access

    Mitsuyoshi KISHIHARA  Masaya TAKEUCHI  Akinobu YAMAGUCHI  Yuichi UTSUMI  Isao OHTA  

     
    PAPER-Microwaves, Millimeter-Waves

      Pubricized:
    2021/03/15
      Vol:
    E104-C No:9
      Page(s):
    446-454

    The microfabrication technique based on synchrotron radiation (SR) direct etching process has recently been applied to construct PTFE microstructures. This paper proposes a PTFE substrate integrated waveguide (PTFE SIW). It is expected that the PTFE SIW contributes to the improvement of the structural strength. A rectangular through-hole is introduced taking the advantage of the SR direct etching process. First, a PTFE SIW for the Q-band is designed. Then, a cruciform 3-dB directional coupler consisting of the PTFE SIW is designed and fabricated by the SR direct etching process. The validity of the PTFE SIW coupler is confirmed by measuring the frequency characteristics of the S-parameters. The mechanical strength of the PTFE SIW and the peeling strength of its Au film are also additionally investigated.

  • Realization of Multi-Terminal Universal Interconnection Networks Using Contact Switches

    Tsutomu SASAO  Takashi MATSUBARA  Katsufumi TSUJI  Yoshiaki KOGA  

     
    PAPER-Logic Design

      Pubricized:
    2021/04/01
      Vol:
    E104-D No:8
      Page(s):
    1068-1075

    A universal interconnection network implements arbitrary interconnections among n terminals. This paper considers a problem to realize such a network using contact switches. When n=2, it can be implemented with a single switch. The number of different connections among n terminals is given by the Bell number B(n). The Bell number shows the total number of methods to partition n distinct elements. For n=2, 3, 4, 5 and 6, the corresponding Bell numbers are 2, 5, 15, 52, and 203, respectively. This paper shows a method to realize an n terminal universal interconnection network with $ rac {3}{8}(n^2-1)$ contact switches when n=2m+1≥5, and $ rac {n}{8}(3n+2)$ contact switches, when n=2m≥6. Also, it shows that a lower bound on the number of contact switches to realize an n-terminal universal interconnection network is ⌈log 2B(n)⌉, where B(n) is the Bell number.

  • Hybrid Electrical/Optical Switch Architectures for Training Distributed Deep Learning in Large-Scale

    Thao-Nguyen TRUONG  Ryousei TAKANO  

     
    PAPER-Information Network

      Pubricized:
    2021/04/23
      Vol:
    E104-D No:8
      Page(s):
    1332-1339

    Data parallelism is the dominant method used to train deep learning (DL) models on High-Performance Computing systems such as large-scale GPU clusters. When training a DL model on a large number of nodes, inter-node communication becomes bottle-neck due to its relatively higher latency and lower link bandwidth (than intra-node communication). Although some communication techniques have been proposed to cope with this problem, all of these approaches target to deal with the large message size issue while diminishing the effect of the limitation of the inter-node network. In this study, we investigate the benefit of increasing inter-node link bandwidth by using hybrid switching systems, i.e., Electrical Packet Switching and Optical Circuit Switching. We found that the typical data-transfer of synchronous data-parallelism training is long-lived and rarely changed that can be speed-up with optical switching. Simulation results on the Simgrid simulator show that our approach speed-up the training time of deep learning applications, especially in a large-scale manner.

  • Tight Upper Bound on the Bit Error Rate of Convolutional Codes over Correlated Nakagami-m Fading Channels

    Seongah JEONG  Jinkyu KANG  Hoojin LEE  

     
    LETTER-Communication Theory and Signals

      Pubricized:
    2021/02/08
      Vol:
    E104-A No:8
      Page(s):
    1080-1083

    In this letter, we investigate tight analytical and asymptotic upper bounds for bit error rate (BER) of constitutional codes over exponentially correlated Nakagami-m fading channels. Specifically, we derive the BER expression depending on an exact closed-form formula for pairwise error event probabilities (PEEP). Moreover, the corresponding asymptotic analysis in high signal-to-noise ratio (SNR) regime is also explored, which is verified via numerical results. This allows us to have explicit insights on the achievable coding gain and diversity order.

  • An Efficient Aircraft Boarding Strategy Considering Implementation

    Kenji UEHARA  Kunihiko HIRAISHI  Kokolo IKEDA  

     
    PAPER-Mathematical Systems Science

      Pubricized:
    2021/01/22
      Vol:
    E104-A No:8
      Page(s):
    1051-1058

    Boarding is the last step of aircraft turnaround and its completion in the shortest possible time is desired. In this paper, we propose a new boarding strategy that outperforms conventional strategies such as the back-to-front strategy and the outside-in strategy. The Steffen method is known as one of the most efficient boarding strategies in literature, but it is hard to be realized in the real situation because the complete sorting of passengers in a prescribed order is required. The proposed strategy shows a performance close to that of the Steffen method and can be easily implemented by using a special gate system.

  • Logarithmic Regret for Distributed Online Subgradient Method over Unbalanced Directed Networks

    Makoto YAMASHITA  Naoki HAYASHI  Takeshi HATANAKA  Shigemasa TAKAI  

     
    PAPER-Systems and Control

      Pubricized:
    2021/02/04
      Vol:
    E104-A No:8
      Page(s):
    1019-1026

    This paper investigates a constrained distributed online optimization problem over strongly connected communication networks, where a local cost function of each agent varies in time due to environmental factors. We propose a distributed online projected subgradient method over unbalanced directed networks. The performance of the proposed method is evaluated by a regret which is defined by the error between the cumulative cost over time and the cost of the optimal strategy in hindsight. We show that a logarithmic regret bound can be achieved for strongly convex cost functions. We also demonstrate the validity of the proposed method through a numerical example on distributed estimation over a diffusion field.

  • Design of Diplexer Using Surface Acoustic Wave and Multilayer Ceramic Filters with Controllable Transmission Zero

    Shinpei OSHIMA  Hiroto MARUYAMA  

     
    PAPER-Microwaves, Millimeter-Waves

      Pubricized:
    2021/01/15
      Vol:
    E104-C No:8
      Page(s):
    370-378

    In this paper, we propose a design method for a diplexer using a surface acoustic wave (SAW) filter, a multilayer ceramic filter, chip inductors, and chip capacitors. A controllable transmission zero can be created in the stopband by designing matching circuits based on the out-of-band characteristics of the SAW filter using this method. The proposed method can achieve good attenuation performance and a compact size because it does not use an additional resonator for creating the controllable transmission zero and the matching circuits are composed of only five components. A diplexer is designed for 2.4 GHz wireless systems and a global positioning system receiver using the proposed method. It is compact (8.0 mm × 8.0 mm), and the measurement results indicate good attenuation performance with the controllable transmission zero.

281-300hit(5768hit)