The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] IR(5768hit)

221-240hit(5768hit)

  • KBP: Kernel Enhancements for Low-Latency Networking for Virtual Machine and Container without Application Customization Open Access

    Kei FUJIMOTO  Masashi KANEKO  Kenichi MATSUI  Masayuki AKUTSU  

     
    PAPER-Network

      Pubricized:
    2021/10/26
      Vol:
    E105-B No:5
      Page(s):
    522-532

    Packet processing on commodity hardware is a cost-efficient and flexible alternative to specialized networking hardware. However, virtualizing dedicated networking hardware as a virtual machine (VM) or a container on a commodity server results in performance problems, such as longer latency and lower throughput. This paper focuses on obtaining a low-latency networking system in a VM and a container. We reveal mechanisms that cause millisecond-scale networking delays in a VM through a series of experiments. To eliminate such delays, we design and implement a low-latency networking system, kernel busy poll (KBP), which achieves three goals: (1) microsecond-scale tail delays and higher throughput than conventional solutions are achieved in a VM and a container; (2) application customization is not required, so applications can use the POSIX sockets application program interface; and (3) KBP software does not need to be developed for every Linux kernel security update. KBP can be applied to both a VM configuration and a container configuration. Evaluation results indicate that KBP achieves microsecond-scale tail delays in both a VM and a container. In the VM configuration, KBP reduces maximum round-trip latency by more than 98% and increases the throughput by up to three times compared with existing NAPI and Open vSwitch with the Data Plane Development Kit (OvS-DPDK). In the container configuration, KBP reduces maximum round-trip latency by 21% to 96% and increases the throughput by up to 1.28 times compared with NAPI.

  • Design and Optimization for Energy-Efficient Transmission Strategies with Full-Duplex Amplify-and-Forward Relaying

    Caixia CAI  Wenyang GAN  Han HAI  Fengde JIA  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2021/10/28
      Vol:
    E105-B No:5
      Page(s):
    608-616

    In this paper, to improve communication system's energy-efficiency (EE), multi-case optimization of two new transmission strategies is investigated. Firstly, with amplify-and-forward relaying and full-duplex technique, two new transmission strategies are designed. The designed transmission strategies consider direct links and non-ideal transmission conditions. At the same time, detailed capacity and energy consumption analyses of the designed transmission strategies are given. In addition, EE optimization and analysis of the designed transmission strategies are studied. It is the first case of EE optimization and it is achieved by joint optimization of transmit time (TT) and transmit power (TP). Furthermore, the second and third cases of EE optimization with respectively optimizing TT and TP are given. Simulations reveal that the designed transmission strategies can effectively improve the communication system's EE.

  • A Study on the Bandwidth of the Transformer Matching Circuits

    Satoshi TANAKA  

     
    PAPER

      Pubricized:
    2021/10/25
      Vol:
    E105-A No:5
      Page(s):
    844-852

    With the spread of the 5th generation mobile phone, the increase of the output power of PA (power amplifier) has become important, and in recent years, differential amplifiers that can increase the output voltage amplitude for the power supply voltage have been examined from the viewpoint of power synthesis. In the case of a differential PA, in addition to the advantage of voltage amplitude, the load impedance can be set 4 times as much as that of a single-ended PA, which makes it possible to reduce the impact of parasitic resistance. With the study of the differential PA, many transformer matching circuits have been studied in addition to the LC matching circuits that have been widely used in the past. The transformer matching circuit can easily realize the differential-single conversion, and the transformer matching circuit is an indispensable technology in the differential PA. As with the LC matching circuit, widening the bandwidth of the transformer matching circuit is at issue. In this paper, characteristics of basic transformer matching circuits are analyzed by adding input/output shunt capacitance to transformers and the conditions of bandwidth improvement are clarified. In addition, by comparing the FBW (fractional bandwidth) with the LC 2-stage matching circuit, it is shown that the FBW can be competitive.

  • Feature Selection and Parameter Optimization of Support Vector Machines Based on a Local Search Based Firefly Algorithm for Classification of Formulas in Traditional Chinese Medicine Open Access

    Wen SHI  Jianling LIU  Jingyu ZHANG  Yuran MEN  Hongwei CHEN  Deke WANG  Yang CAO  

     
    LETTER-Algorithms and Data Structures

      Pubricized:
    2021/11/16
      Vol:
    E105-A No:5
      Page(s):
    882-886

    Syndrome is a crucial principle of Traditional Chinese Medicine. Formula classification is an effective approach to discover herb combinations for the clinical treatment of syndromes. In this study, a local search based firefly algorithm (LSFA) for parameter optimization and feature selection of support vector machines (SVMs) for formula classification is proposed. Parameters C and γ of SVMs are optimized by LSFA. Meanwhile, the effectiveness of herbs in formula classification is adopted as a feature. LSFA searches for well-performing subsets of features to maximize classification accuracy. In LSFA, a local search of fireflies is developed to improve FA. Simulations demonstrate that the proposed LSFA-SVM algorithm outperforms other classification algorithms on different datasets. Parameters C and γ and the features are optimized by LSFA to obtain better classification performance. The performance of FA is enhanced by the proposed local search mechanism.

  • Markov-Chain Analysis Model based Active Period Adaptation Scheme for IEEE 802.15.4 Network

    Ryota HORIUCHI  Kohei TOMITA  Nobuyoshi KOMURO  

     
    PAPER

      Pubricized:
    2021/10/22
      Vol:
    E105-A No:5
      Page(s):
    770-777

    Energy efficiency is one of the critical issues for Wireless Sensor Networks (WSN). IEEE 802.15.4 beacon-enabled MAC protocol achieves low energy consumption by having periodical inactive portions, where nodes run in low power. However, IEEE 802.15.4 beacon-enabled protocol cannot respond to dynamic changes in the number of sensor nodes and data rates in WSN because its duty cycle is fixed and immutable. In this paper, we propose a dynamic superframe duration adaptation scheme based on the Markov chain-based analysis methods for IEEE 802.15.4 beacon-enabled protocol. The proposed methods are flexible enough to accommodate changes in the number of sensor nodes and differences in data rates in WSNs while maintaining low latency and low energy consumption despite slight degradation in packet delivery ratio.

  • Performance Evaluation of Classification and Verification with Quadrant IQ Transition Image

    Hiro TAMURA  Kiyoshi YANAGISAWA  Atsushi SHIRANE  Kenichi OKADA  

     
    PAPER-Network Management/Operation

      Pubricized:
    2021/12/01
      Vol:
    E105-B No:5
      Page(s):
    580-587

    This paper presents a physical layer wireless device identification method that uses a convolutional neural network (CNN) operating on a quadrant IQ transition image. This work introduces classification and detection tasks in one process. The proposed method can identify IoT wireless devices by exploiting their RF fingerprints, a technology to identify wireless devices by using unique variations in analog signals. We propose a quadrant IQ image technique to reduce the size of CNN while maintaining accuracy. The CNN utilizes the IQ transition image, which image processing cut out into four-part. An over-the-air experiment is performed on six Zigbee wireless devices to confirm the proposed identification method's validity. The measurement results demonstrate that the proposed method can achieve 99% accuracy with the light-weight CNN model with 36,500 weight parameters in serial use and 146,000 in parallel use. Furthermore, the proposed threshold algorithm can verify the authenticity using one classifier and achieved 80% accuracy for further secured wireless communication. This work also introduces the identification of expanded signals with SNR between 10 to 30dB. As a result, at SNR values above 20dB, the proposals achieve classification and detection accuracies of 87% and 80%, respectively.

  • Experiment of Integrated Technologies in Robotics, Network, and Computing for Smart Agriculture Open Access

    Ryota ISHIBASHI  Takuma TSUBAKI  Shingo OKADA  Hiroshi YAMAMOTO  Takeshi KUWAHARA  Kenichi KAWAMURA  Keisuke WAKAO  Takatsune MORIYAMA  Ricardo OSPINA  Hiroshi OKAMOTO  Noboru NOGUCHI  

     
    INVITED PAPER

      Pubricized:
    2021/11/05
      Vol:
    E105-B No:4
      Page(s):
    364-378

    To sustain and expand the agricultural economy even as its workforce shrinks, the efficiency of farm operations must be improved. One key to efficiency improvement is completely unmanned driving of farm machines, which requires stable monitoring and control of machines from remote sites, a safety system to ensure safe autonomous driving even without manual operations, and precise positioning in not only small farm fields but also wider areas. As possible solutions for those issues, we have developed technologies of wireless network quality prediction, an end-to-end overlay network, machine vision for safety and positioning, network cooperated vehicle control and autonomous tractor control and conducted experiments in actual field environments. Experimental results show that: 1) remote monitoring and control can be seamlessly continued even when connection between the tractor and the remote site needs to be switched across different wireless networks during autonomous driving; 2) the safety of the autonomous driving can automatically be ensured by detecting both the existence of people in front of the unmanned tractor and disturbance of network quality affecting remote monitoring operation; and 3) the unmanned tractor can continue precise autonomous driving even when precise positioning by satellite systems cannot be performed.

  • Dynamic Service Chain Construction Based on Model Predictive Control in NFV Environments

    Masaya KUMAZAKI  Masaki OGURA  Takuji TACHIBANA  

     
    PAPER-Network Virtualization

      Pubricized:
    2021/10/15
      Vol:
    E105-B No:4
      Page(s):
    399-410

    For beyond 5G era, in network function virtualization (NFV) environments, service chaining can be utilized to provide the flexible network infrastructures needed to support the creation of various application services. In this paper, we propose a dynamic service chain construction based on model predictive control (MPC) to utilize network resources. In the proposed method, the number of data packets in the buffer at each node is modeled as a dynamical system for MPC. Then, we formulate an optimization problem with the predicted amount of traffic injecting into each service chain from users for the dynamical system. In the optimization problem, the transmission route of each service chain, the node where each VNF is placed, and the amount of resources for each VNF are determined simultaneously by using MPC so that the amount of resources allocated to VNFs and the number of VNF migrations are minimized. In addition, the performance of data transmission is also controlled by considering the maximum amount of data packets stored in buffers. The performance of the proposed method is evaluated by simulation, and the effectiveness of the proposed method with different parameter values is investigated.

  • RF Signal Frequency Identification in a Direct RF Undersampling Multi-Band Real-Time Spectrum Monitor for Wireless IoT Usage

    Tomoyuki FURUICHI  Mizuki MOTOYOSHI  Suguru KAMEDA  Takashi SHIBA  Noriharu SUEMATSU  

     
    PAPER-Software Defined Radio

      Pubricized:
    2021/10/12
      Vol:
    E105-B No:4
      Page(s):
    461-471

    To reduce the complexity of direct radio frequency (RF) undersampling real-time spectrum monitoring in wireless Internet of Things (IoT) bands (920MHz, 2.4GHz, and 5 GHz bands), a design method of sampling frequencies is proposed in this paper. The Direct RF Undersampling receiver architecture enables the use of ADC with sampling clock lower frequency than receiving RF signal, but it needs RF signal identification signal processing from folded spectrums with multiple sampling clock frequencies. The proposed design method allows fewer sampling frequencies to be used than the conventional design method for continuous frequency range (D.C. to 5GHz-band). The proposed method reduced 2 sampling frequencies in wireless IoT bands case compared with the continuous range. The design result using the proposed method is verified by measurement.

  • On the Asymptotic Evaluation of the Physical Optics Approximation for Plane Wave Scattering by Circular Conducting Cylinders

    Ngoc Quang TA  Hiroshi SHIRAI  

     
    PAPER

      Pubricized:
    2021/10/18
      Vol:
    E105-C No:4
      Page(s):
    128-136

    In this paper, the scattering far-field from a circular electric conducting cylinder has been analyzed by physical optics (PO) approximation for both H and E polarizations. The evaluation of radiation integrations due to the PO current is conducted numerically and analytically. While non-uniform and uniform asymptotic solutions have been derived by the saddle point method, a separate approximation has been made for forward scattering direction. Comparisons among our approximation, direct numerical integration and exact solution results yield a good agreement for electrically large cylinders.

  • Calibration of a Coaxial-Loaded Stepped Cut-Off Circular Waveguide and Related Application of Dielectric Measurement for Liquids Open Access

    Kouji SHIBATA  

     
    PAPER-Microwaves, Millimeter-Waves

      Pubricized:
    2021/10/21
      Vol:
    E105-C No:4
      Page(s):
    163-171

    A novel jig structure for S11 calibration with short/open conditions and one reference material (referred to here as SOM) in dielectric measurement of liquids using a coaxial feed type stepped cut-off circular waveguide and a formula for exact calculation of S11 for the analytical model of the structure using the method of moments (MoM) was proposed. The accuracy and validity of S11 values calculated using the relevant formula was then verified for frequencies of 0.50, 1.5 and 3.0 GHz, and S11 measurement accuracy with each termination condition was verified after calibration with SOM by combining the jig of the proposed structure with the study's electromagnetic (EM) analysis method. The relative complex permittivity was then estimated from S11 values measured with various liquids in the jig after calibration, and differences in results obtained with the proposed method and the conventional jig, the analytical model and the EM analysis method were examined. The validity of the proposed dielectric measurement method based on a combination of the above jig structure, numerical S11 calculation and the calibration method was thus confirmed.

  • An Efficient Resource Allocation Using Resource Abstraction for Optical Access Networks for 5G-RAN

    Seiji KOZAKI  Akiko NAGASAWA  Takeshi SUEHIRO  Kenichi NAKURA  Hiroshi MINENO  

     
    PAPER-Network Virtualization

      Pubricized:
    2021/11/22
      Vol:
    E105-B No:4
      Page(s):
    411-420

    In this paper, a novel method of resource abstraction and an abstracted-resource model for dynamic resource control in optical access networks are proposed. Based on this proposal, an implementation assuming application to 5G mobile fronthaul and backhaul is presented. Finally, an evaluation of the processing time for resource allocation using this method is performed using a software prototype of the control function. From the results of the evaluation, it is confirmed that the proposed method offers better characteristics than former approaches, and is suitable for dynamic resource control in 5G applications.

  • Numerical Analysis of Pulse Response for Slanted Grating Structure with an Air Regions in Dispersion Media by TE Case Open Access

    Ryosuke OZAKI  Tsuneki YAMASAKI  

     
    BRIEF PAPER

      Pubricized:
    2021/10/18
      Vol:
    E105-C No:4
      Page(s):
    154-158

    In our previous paper, we have proposed a new numerical technique for transient scattering problem of periodically arrayed dispersion media by using a combination of the fast inversion Laplace transform (FILT) method and Fourier series expansion method (FSEM), and analyzed the pulse response for several widths of the dispersion media or rectangular cavities. From the numerical results, we examined the influence of a periodically arrayed dispersion media with a rectangular cavity on the pulse response. In this paper, we analyzed the transient scattering problem for the case of dispersion media with slanted air regions by utilizing a combination of the FILT, FSEM, and multilayer division method (MDM), and investigated an influence for the slanted angle of an air region. In addition, we verified the computational accuracy for term of the MDM and truncation mode number of the electromagnetic fields.

  • Effects of Lossy Mediums for Resonator-Coupled Type Wireless Power Transfer System using Conventional Single- and Dual-Spiral Resonators

    Nur Syafiera Azreen NORODIN  Kousuke NAKAMURA  Masashi HOTTA  

     
    PAPER-Microwaves, Millimeter-Waves

      Pubricized:
    2021/10/18
      Vol:
    E105-C No:3
      Page(s):
    110-117

    To realize a stable and efficient wireless power transfer (WPT) system that can be used in any environment, it is necessary to inspect the influence of environmental interference along the power transmission path of the WPT system. In this paper, attempts have been made to reduce the influence of the medium with a dielectric and conductive loss on the WPT system using spiral resonators for resonator-coupled type wireless power transfer (RC-WPT) system. An important element of the RC-WPT system is the resonators because they improve resonant characteristics by changing the shape or combination of spiral resonators to confine the electric field that mainly causes electrical loss in the system as much as possible inside the resonator. We proposed a novel dual-spiral resonator as a candidate and compared the basic characteristics of the RC-WPT system with conventional single-spiral and dual-spiral resonators. The parametric values of the spiral resonators, such as the quality factors and the coupling coefficients between resonators with and without a lossy medium in the power transmission path, were examined. For the lossy mediums, pure water or tap water filled with acryl bases was used. The maximum transmission efficiency of the RC-WPT system was then observed by tuning the matching condition of the system. Following that, the transmission efficiency of the system with and without lossy medium was investigated. These inspections revealed that the performance of the RC-WPT system with the lossy medium using the modified shape spiral resonator, which is the dual-spiral resonator proposed in our laboratory, outperformed the system using the conventional single-spiral resonator.

  • Three-Stage Padding Configuration for Sparse Arrays with Larger Continuous Virtual Aperture and Increased Degrees of Freedom

    Abdul Hayee SHAIKH  Xiaoyu DANG  Imran A. KHOSO  Daqing HUANG  

     
    PAPER-Analog Signal Processing

      Pubricized:
    2021/09/08
      Vol:
    E105-A No:3
      Page(s):
    549-561

    A three-stage padding configuration providing a larger continuous virtual aperture and achieving more degrees-of-freedom (DOFs) for the direction-of-arrival (DOA) estimation is presented. The improvement is realized by appropriately cascading three-stages of an identical inter-element spacing. Each stage advantageously exhibits a continuous virtual array, which subsequently produces a hole-free resulting uniform linear array. The geometrical approach remains applicable for any existing sparse array structures with a hole-free coarray, as well as designed in the future. In addition to enlarging the continuous virtual aperture and DOFs, the proposed design offers flexibility so that it can be realized for any given number of antennas. Moreover, a special padding configuration is demonstrated, which further increases the number of continuous virtual sensors. The precise antenna locations and the number of continuous virtual positions are benefited from the closed-form expressions. Experimental works are carried out to demonstrate the effectiveness of the proposed configuration.

  • Efficient Zero-Knowledge Proofs of Graph Signature for Connectivity and Isolation Using Bilinear-Map Accumulator

    Toru NAKANISHI  Hiromi YOSHINO  Tomoki MURAKAMI  Guru-Vamsi POLICHARLA  

     
    PAPER-Cryptography and Information Security

      Pubricized:
    2021/09/08
      Vol:
    E105-A No:3
      Page(s):
    389-403

    To prove the graph relations such as the connectivity and isolation for a certified graph, a system of a graph signature and proofs has been proposed. In this system, an issuer generates a signature certifying the topology of an undirected graph, and issues the signature to a prover. The prover can prove the knowledge of the signature and the graph in the zero-knowledge, i.e., the signature and the signed graph are hidden. In addition, the prover can prove relations on the certified graph such as the connectivity and isolation between two vertexes. In the previous system, using integer commitments on RSA modulus, the graph relations are proved. However, the RSA modulus needs a longer size for each element. Furthermore, the proof size and verification cost depend on the total numbers of vertexes and edges. In this paper, we propose a graph signature and proof system, where these are computed on bilinear groups without the RSA modulus. Moreover, using a bilinear map accumulator, the prover can prove the connectivity and isolation on a graph, where the proof size and verification cost become independent from the total numbers of vertexes and edges.

  • An Adjustable Contention Window Management for Dense IEEE 802.11 Networks

    Chandra Sukanya NANDYALA  Sunggeun JIN  

     
    PAPER-Network

      Pubricized:
    2021/09/24
      Vol:
    E105-B No:3
      Page(s):
    270-274

    We propose a novel contention window management algorithm that adjusts contention window size in dense wireless network environments. In the algorithm, a station estimates the number of neighboring stations by observing its number of freezes while attempting wireless channel accesses. Then, station adopts a new contention window size for further frame transmissions. We evaluate the proposed algorithm with the NS-3 simulator. The simulation results show that our algorithm outperforms existing works in terms of delay, throughput, collision rate, and frame delivery ratio.

  • Balanced Whiteman Generalized Cyclotomic Sequences with Maximal 2-adic Complexity

    Chun-e ZHAO  Yuhua SUN  Tongjiang YAN  Xubo ZHAO  

     
    LETTER-Cryptography and Information Security

      Pubricized:
    2021/09/21
      Vol:
    E105-A No:3
      Page(s):
    603-606

    Binary sequences with high linear complexity and high 2-adic complexity have important applications in communication and cryptography. In this paper, the 2-adic complexity of a class of balanced Whiteman generalized cyclotomic sequences which have high linear complexity is considered. Through calculating the determinant of the circulant matrix constructed by one of these sequences, the result shows that the 2-adic complexity of this class of sequences is large enough to resist the attack of the rational approximation algorithm (RAA) for feedback with carry shift registers (FCSRs).

  • Macro Cell Switching of Transmit Antennas in Distributed Antenna Transmission

    Takahito TSUKAMOTO  Go OTSURU  Yukitoshi SANADA  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2021/10/15
      Vol:
    E105-B No:3
      Page(s):
    302-308

    In this paper, a macro cell switching scheme for distributed antennas is proposed. In conventional distributed antenna transmission (DAT), the macro cell to which each antenna belongs is fixed. Though a cell-free system has been investigated because of its higher system throughput, the implementation cost of front-hauls can be excessive. To increase the flexibility of resource allocation in the DAT with moderate front-haul complexity, we propose the macro cell switching of distributed antennas (DAs). In the proposed scheme, DAs switch their attribution macro cells depending on the amount of pre-assigned connections. Numerical results obtained through computer simulation show that the proposed scheme realizes a better system throughput than the conventional system, especially when the number of user equipments (UEs) is smaller and the distance between DAs are larger.

  • A Study on Cognitive Transformation in the Process of Acquiring Movement Skills for Changing Running Direction

    Masatoshi YAMADA  Masaki OHATA  Daisuke KAKOI  

     
    PAPER

      Pubricized:
    2021/11/11
      Vol:
    E105-D No:3
      Page(s):
    565-577

    In ball games, acquiring skills to change the direction becomes necessary. For revealing the mechanism of skill acquisition in terms of the relevant field, it would be necessary to take an approach regarding players' cognition as well as body movements measurable from outside. In the phase of change-of-direction performance that this study focuses on, cognitive factors including the prediction of opposite players' movements and judgements of the situation have significance. The purpose of this study was to reveal cognitive transformation in the skill acquisition process for change-of-direction performance. The survey was conducted for three months from August 29 to November 28, 2020, and those surveyed were seven university freshmen belonging to women's basketball club of M University. The way to analyze verbal reports collected in order to explore the changes in the players' cognition is described in Sect.2. In Sect.3, we made a plot graph showing temporal changes in respective factors based on coding outcomes for verbal reports. Consequently, as cognitive transformation in the skill acquisition process for change-of-direction performance, four items such as (1) goal setting for skill acquisition, (2) experience of change in running direction, (3) experience of speed and acceleration, and (4) experience of the movement of lower extremities such as legs and hip joints were suggested as common cognitive transformation. In addition, cognitive transformation varied by the degree of skill acquisition for change-of-direction performance. It was indicated that paying too much attention to body feelings including the position of and shift in the center of gravity in the body posed an obstacle to the skill acquisition for change-of-direction performance.

221-240hit(5768hit)