The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] IR(5768hit)

41-60hit(5768hit)

  • Optical Mode Multiplexer Using LiNbO3 Asymmetric Directional Coupler Enabling Voltage Control for Phase-Matching Condition Open Access

    Shotaro YASUMORI  Seiya MORIKAWA  Takanori SATO  Tadashi KAWAI  Akira ENOKIHARA  Shinya NAKAJIMA  Kouichi AKAHANE  

     
    BRIEF PAPER-Optoelectronics

      Pubricized:
    2023/11/29
      Vol:
    E107-C No:5
      Page(s):
    146-149

    An optical mode multiplexer was newly designed and fabricated using LiNbO3 waveguides. The multiplexer consists of an asymmetric directional coupler capable of achieving the phase-matching condition by the voltage adjustment. The mode conversion efficiency between TM0 and TM1 modes was quantitatively measured to be 0.86 at maximum.

  • Analysis of Optical Power Splitter with Resonator Structure Constructed by Two-Dimensional MDM Plasmonic Waveguide Open Access

    Yoshihiro NAKA  Masahiko NISHIMOTO  Mitsuhiro YOKOTA  

     
    BRIEF PAPER-Electromagnetic Theory

      Pubricized:
    2023/12/07
      Vol:
    E107-C No:5
      Page(s):
    141-145

    An efficient optical power splitter constructed by a metal-dielectric-metal plasmonic waveguide with a resonator structure has been analyzed. The method of solution is the finite difference time domain (FD-TD) method with the piecewise linear recursive convolution (PLRC) method. The resonator structure consists of input/output waveguides and a narrow waveguide with a T-junction. The power splitter with the resonator structure is expressed by an equivalent transmission-line circuit. We can find that the transmittance and reflectance calculated by the FD-TD method and the equivalent circuit are matched when the difference in width between the input/output waveguides and the narrow waveguide is small. It is also shown that the transmission wavelength can be adjusted by changing the narrow waveguide lengths that satisfy the impedance matching condition in the equivalent circuit.

  • Estimation of Drone Payloads Using Millimeter-Wave Fast-Chirp-Modulation MIMO Radar Open Access

    Kenshi OGAWA  Masashi KUROSAKI  Ryohei NAKAMURA  

     
    PAPER-Sensing

      Vol:
    E107-B No:5
      Page(s):
    419-428

    With the development of drone technology, concerns have arisen about the possibility of drones being equipped with threat payloads for terrorism and other crimes. A drone detection system that can detect drones carrying payloads is needed. A drone’s propeller rotation frequency increases with payload weight. Therefore, a method for estimating propeller rotation frequency will effectively detect the presence or absence of a payload and its weight. In this paper, we propose a method for classifying the payload weight of a drone by estimating its propeller rotation frequency from radar images obtained using a millimeter-wave fast-chirp-modulation multiple-input and multiple-output (MIMO) radar. For each drone model, the proposed method requires a pre-prepared reference dataset that establishes the relationships between the payload weight and propeller rotation frequency. Two experimental measurement cases were conducted to investigate the effectiveness of our proposal. In case 1, we assessed four drones (DJI Matrice 600, DJI Phantom 3, DJI Mavic Pro, and DJI Mavic Mini) to determine whether the propeller rotation frequency of any drone could be correctly estimated. In case 2, experiments were conducted on a hovering Phantom 3 drone with several payloads in a stable position for calculating the accuracy of the payload weight classification. The experimental results indicated that the proposed method could estimate the propeller rotation frequency of any drone and classify payloads in a 250 g step with high accuracy.

  • 150 GHz Fundamental Oscillator Utilizing Transmission-Line-Based Inter-Stage Matching in 130 nm SiGe BiCMOS Technology Open Access

    Sota KANO  Tetsuya IIZUKA  

     
    LETTER

      Pubricized:
    2023/12/05
      Vol:
    E107-A No:5
      Page(s):
    741-745

    A 150 GHz fundamental oscillator employing an inter-stage matching network based on a transmission line is presented in this letter. The proposed oscillator consists of a two-stage common-emitter amplifier loop, whose inter-stage connections are optimized to meet the oscillation condition. The oscillator is designed in a 130-nm SiGe BiCMOS process that offers fT and fMAX of 350 GHz and 450 GHz. According to simulation results, an output power of 3.17 dBm is achieved at 147.6 GHz with phase noise of -115 dBc/Hz at 10 MHz offset and figure-of-merit (FoM) of -180 dBc/Hz.

  • RC-Oscillator-Based Battery-Less Wireless Sensing System Using RF Resonant Electromagnetic Coupling Open Access

    Zixuan LI  Sangyeop LEE  Noboru ISHIHARA  Hiroyuki ITO  

     
    PAPER

      Pubricized:
    2023/11/24
      Vol:
    E107-A No:5
      Page(s):
    727-740

    A wireless sensor terminal module of 5cc size (2.5 cm × 2.5 cm × 0.8 cm) that does not require a battery is proposed by integrating three kinds of circuit technologies. (i) a low-power sensor interface: an FM modulation type CMOS sensor interface circuit that can operate with a typical power consumption of 24.5 μW was fabricated by the 0.7-μm CMOS process technology. (ii) power supply to the sensor interface circuit: a wireless power transmission characteristic to a small-sized PCB spiral coil antenna was clarified and applied to the module. (iii) wireless sensing from the module: backscatter communication technology that modulates the signal from the base terminal equipment with sensor information and reflects it, which is used for the low-power sensing operation. The module fabricated includes a rectifier circuit with the PCB spiral coil antenna that receives wireless power transmitted from base terminal equipment by electromagnetic resonance coupling and converts it into DC power and a sensor interface circuit that operates using the power. The interface circuit modulates the received signal with the sensor information and reflects it back to the base terminal. The module could achieve 100 mm communication distance when 0.4 mW power is feeding to the sensor terminal.

  • Effects of Parasitic Elements on L-Type LC/CL Matching Circuits Open Access

    Satoshi TANAKA  Takeshi YOSHIDA  Minoru FUJISHIMA  

     
    PAPER

      Pubricized:
    2023/11/07
      Vol:
    E107-A No:5
      Page(s):
    719-726

    L-type LC/CL matching circuits are well known for their simple analytical solutions and have been applied to many radio-frequency (RF) circuits. When actually constructing a circuit, parasitic elements are added to inductors and capacitors. Therefore, each L and C element has a self-resonant frequency, which affects the characteristics of the matching circuit. In this paper, the parallel parasitic capacitance to the inductor and the series parasitic inductor to the capacitance are taken up as parasitic elements, and the details of the effects of the self-resonant frequency of each element on the S11, voltage standing wave ratio (VSWR) and S21 characteristics are reported. When a parasitic element is added, each characteristic basically tends to deteriorate as the self-resonant frequency decreases. However, as an interesting feature, we found that the combination of resonant frequencies determines the VSWR and passband characteristics, regardless of whether it is the inductor or the capacitor.

  • Implementing Optical Analog Computing and Electrooptic Hopfield Network by Silicon Photonic Circuits Open Access

    Guangwei CONG  Noritsugu YAMAMOTO  Takashi INOUE  Yuriko MAEGAMI  Morifumi OHNO  Shota KITA  Rai KOU  Shu NAMIKI  Koji YAMADA  

     
    INVITED PAPER

      Pubricized:
    2024/01/05
      Vol:
    E107-A No:5
      Page(s):
    700-708

    Wide deployment of artificial intelligence (AI) is inducing exponentially growing energy consumption. Traditional digital platforms are becoming difficult to fulfill such ever-growing demands on energy efficiency as well as computing latency, which necessitates the development of high efficiency analog hardware platforms for AI. Recently, optical and electrooptic hybrid computing is reactivated as a promising analog hardware alternative because it can accelerate the information processing in an energy-efficient way. Integrated photonic circuits offer such an analog hardware solution for implementing photonic AI and machine learning. For this purpose, we proposed a photonic analog of support vector machine and experimentally demonstrated low-latency and low-energy classification computing, which evidences the latency and energy advantages of optical analog computing over traditional digital computing. We also proposed an electrooptic Hopfield network for classifying and recognizing time-series data. This paper will review our work on implementing classification computing and Hopfield network by leveraging silicon photonic circuits.

  • How the Author’s Group Came Up with Ideas in Analog/Mixed-Signal Circuit and System Area Open Access

    Haruo KOBAYASHI  

     
    INVITED PAPER

      Pubricized:
    2023/12/07
      Vol:
    E107-A No:5
      Page(s):
    681-699

    This article reviews the author’s group research achievements in analog/mixed-signal circuit and system area with introduction of how they came up with the ideas. Analog/mixed-signal circuits and systems have to be designed as well-balanced in many aspects, and coming up ideas needs some experiences and discussions with researchers. It is also heavily dependent on researchers. Here, the author’s group own experiences are presented as well as their research motivations.

  • Construction of Ergodic GMM-HMMs for Classification between Healthy Individuals and Patients Suffering from Pulmonary Disease Open Access

    Masaru YAMASHITA  

     
    PAPER-Pattern Recognition

      Pubricized:
    2023/12/12
      Vol:
    E107-D No:4
      Page(s):
    544-550

    Owing to the several cases wherein abnormal sounds, called adventitious sounds, are included in the lung sounds of a patient suffering from pulmonary disease, the objective of this study was to automatically detect abnormal sounds from auscultatory sounds. To this end, we expressed the acoustic features of the normal lung sounds of healthy people and abnormal lung sounds of patients using Gaussian mixture model (GMM)-hidden Markov models (HMMs), and distinguished between normal and abnormal lung sounds. In our previous study, we constructed left-to-right GMM-HMMs with a limited number of states. Because we expressed abnormal sounds that occur intermittently and repeatedly using limited states, the GMM-HMMs could not express the acoustic features of abnormal sounds. Furthermore, because the analysis frame length and intervals were long, the GMM-HMMs could not express the acoustic features of short time segments, such as heart sounds. Therefore, the classification rate of normal and abnormal respiration was low (86.60%). In this study, we propose the construction of ergodic GMM-HMMs with a repetitive structure for intermittent sounds. Furthermore, we considered a suitable frame length and frame interval to analyze acoustic features. Using the ergodic GMM-HMM, which can express the acoustic features of abnormal sounds and heart sounds that occur repeatedly in detail, the classification rate increased (89.34%). The results obtained in this study demonstrated the effectiveness of the proposed method.

  • Mining User Activity Patterns from Time-Series Data Obtained from UWB Sensors in Indoor Environments Open Access

    Muhammad FAWAD RAHIM  Tessai HAYAMA  

     
    PAPER

      Pubricized:
    2023/12/19
      Vol:
    E107-D No:4
      Page(s):
    459-467

    In recent years, location-based technologies for ubiquitous environments have aimed to realize services tailored to each purpose based on information about an individual's current location. To establish such advanced location-based services, an estimation technology that can accurately recognize and predict the movements of people and objects is necessary. Although global positioning system (GPS) has already been used as a standard for outdoor positioning technology and many services have been realized, several techniques using conventional wireless sensors such as Wi-Fi, RFID, and Bluetooth have been considered for indoor positioning technology. However, conventional wireless indoor positioning is prone to the effects of noise, and the large range of estimated indoor locations makes it difficult to identify human activities precisely. We propose a method to mine user activity patterns from time-series data of user's locationss in an indoor environment using ultra-wideband (UWB) sensors. An UWB sensor is useful for indoor positioning due to its high noise immunity and measurement accuracy, however, to our knowledge, estimation and prediction of human indoor activities using UWB sensors have not yet been addressed. The proposed method consists of three steps: 1) obtaining time-series data of the user's location using a UWB sensor attached to the user, and then estimating the areas where the user has stayed; 2) associating each area of the user's stay with a nearby landmark of activity and assigning indoor activities; and 3) mining the user's activity patterns based on the user's indoor activities and their transitions. We conducted experiments to evaluate the proposed method by investigating the accuracy of estimating the user's area of stay using a UWB sensor and observing the results of activity pattern mining applied to actual laboratory members over 30-days. The results showed that the proposed method is superior to a comparison method, Time-based clustering algorithm, in estimating the stay areas precisely, and that it is possible to reveal the user's activity patterns appropriately in the actual environment.

  • 300-GHz-Band Dual-Band Bandstop Filter Based on Two Different Sized Split Ring Resonators Open Access

    Akihiko HIRATA  

     
    PAPER-Microwaves, Millimeter-Waves

      Pubricized:
    2023/10/13
      Vol:
    E107-C No:4
      Page(s):
    107-114

    For 6G mobile communications, it is important to realize a 300 GHz band bandpass filter that fits the occupied bandwidth of wireless communication system to prevent inter-system interference. This paper presents the design of a 300-GHz-band dual-band bandstop filter composed of two types of different sized split ring resonator (SRR) unit cells. The SRR unit cells are formed by a 5-μm-thick gold pattern on a 200-μm-thick quartz substrate. When two different-sized SRR unit cells are placed alternately on the same quartz substrate and the SRR unit cell size is over 260 μm, the stopbands of the dual-band bandstop filter are almost the same as those of the bandstop filter, which is composed of a single SRR unit cell. The insertion loss of the dual-band bandstop filter at 297.4 GHz is 1.8 dB and the 3-dB passband becomes 16.0 GHz (290.4-306.4 GHz). The attenuation in the two stopbands is greater than 20 dB. Six types of dual-band bandstop filters with different arrangement and different distance between SRR unit cells are prototyped, and the effect of the distance and arrangement between different sized SRR unit cells on the transmission characteristics of dual-band bandstop filters were clarified.

  • Design and Fabrication of a Metasurface for Bandwidth Enhancement of RCS Reduction Based on Scattering Cancellation Open Access

    Hiroshi SUENOBU  Shin-ichi YAMAMOTO  Michio TAKIKAWA  Naofumi YONEDA  

     
    PAPER

      Pubricized:
    2023/09/19
      Vol:
    E107-C No:4
      Page(s):
    91-97

    A method for bandwidth enhancement of radar cross section (RCS) reduction by metasurfaces was studied. Scattering cancellation is one of common methods for reducing RCS of target scatterers. It occurs when the wave scattered by the target scatterer and the wave scattered by the canceling scatterer are the same amplitude and opposite phase. Since bandwidth of scattering cancellation is usually narrow, we proposed the bandwidth enhancement method using metasurfaces, which can control the frequency dependence of the scattering phase. We designed and fabricated a metasurface composed of a patch array on a grounded dielectric substrate. Numerical and experimental evaluations confirmed that the metasurface enhances the bandwidth of 10dB RCS reduction by 52% bandwidth ratio of the metasurface from 34% bandwidth ratio of metallic cancelling scatterers.

  • A Complete Library of Cross-Bar Gate Logic with Three Control Inputs

    Ryosuke MATSUO  Shin-ichi MINATO  

     
    PAPER-VLSI Design Technology and CAD

      Pubricized:
    2023/09/06
      Vol:
    E107-A No:3
      Page(s):
    566-574

    Logic circuits based on a photonic integrated circuit (PIC) have attracted significant interest due to their ultra-high-speed operation. However, they have a fundamental disadvantage that a large amount of the optical signal power is discarded in the path from the optical source to the optical output, which results in significant power consumption. This optical signal power loss is called a garbage output. To address this issue, this paper considers a circuit design without garbage outputs. Although a method for synthesizing an optical logic circuit without garbage outputs is proposed, this synthesis method can not obtain the optimal solution, such as a circuit with the minimum number of gates. This paper proposes a cross-bar gate logic (CBGL) as a new logic structure for optical logic circuits without garbage outputs, moreover enumerates the CBGLs with the minimum number of gates for all three input logic functions by an exhaustive search. Since the search space is vast, our enumeration algorithm incorporates a technique to prune it efficiently. Experimental results for all three-input logic functions demonstrate that the maximum number of gates required to implement the target function is five. In the best case, the number of gates in enumerated CBGLs is one-half compared to the existing method for optical logic circuits without garbage outputs.

  • Template-Based Design Optimization for Selecting Pairing-Friendly Curve Parameters

    Momoko FUKUDA  Makoto IKEDA  

     
    PAPER-VLSI Design Technology and CAD

      Pubricized:
    2023/08/31
      Vol:
    E107-A No:3
      Page(s):
    549-556

    We have realized a design automation platform of hardware accelerator for pairing operation over multiple elliptic curve parameters. Pairing operation is one of the fundamental operations to realize functional encryption. However, known as a computational complexity-heavy algorithm. Also because there have been not yet identified standard parameters, we need to choose curve parameters based on the required security level and affordable hardware resources. To explore this design optimization for each curve parameter is essential. In this research, we have realized an automated design platform for pairing hardware for such purposes. Optimization results show almost equivalent to those prior-art designs by hand.

  • Performance Comparison of the Two Reconstruction Methods for Stabilizer-Based Quantum Secret Sharing

    Shogo CHIWAKI  Ryutaroh MATSUMOTO  

     
    LETTER-Quantum Information Theory

      Pubricized:
    2023/09/20
      Vol:
    E107-A No:3
      Page(s):
    526-529

    Stabilizer-based quantum secret sharing has two methods to reconstruct a quantum secret: The erasure correcting procedure and the unitary procedure. It is known that the unitary procedure has a smaller circuit width. On the other hand, it is unknown which method has smaller depth and fewer circuit gates. In this letter, it is shown that the unitary procedure has smaller depth and fewer circuit gates than the erasure correcting procedure which follows a standard framework performing measurements and unitary operators according to the measurements outcomes, when the circuits are designed for quantum secret sharing using the [[5, 1, 3]] binary stabilizer code. The evaluation can be reversed if one discovers a better circuit for the erasure correcting procedure which does not follow the standard framework.

  • The Influence of Future Perspective on Job Satisfaction and Turnover Intention of Software Engineers

    Ikuto YAMAGATA  Masateru TSUNODA  Keitaro NAKASAI  

     
    LETTER

      Pubricized:
    2023/12/08
      Vol:
    E107-D No:3
      Page(s):
    268-272

    Software development companies must consider employees' job satisfaction and turnover intentions. To explain the related factors, this study focused on future perspective index (FPI). FPI was assumed to relate positively to satisfaction and negatively to turnover. In the analysis, we compared the FPI with existing factors that are considered to be related to job satisfaction. We discovered that the FPI was promising for enhancing explanatory power, particularly when analyzing satisfaction.

  • Influence of the Gate Voltage or the Base Pair Ratio Modulation on the λ-DNA FET Performance

    Naoto MATSUO  Akira HEYA  Kazushige YAMANA  Koji SUMITOMO  Tetsuo TABEI  

     
    BRIEF PAPER-Semiconductor Materials and Devices

      Pubricized:
    2023/08/08
      Vol:
    E107-C No:3
      Page(s):
    76-79

    The influence of the gate voltage or base pair ratio modulation on the λ-DNA FET performance was examined. The result of the gate voltage modulation indicated that the captured electrons in the guanine base of the λ-DNA molecules greatly influenced the Id-Vd characteristics, and that of the base pair ratio modulation indicated that the tendency of the conductivity was partly clarified by considering the activation energy of holes and electrons and the length and numbers of the serial AT or GC sequences over which the holes or electrons jumped. In addition, the influence of the dimensionality of the DNA molecule on the conductivity was discussed theoretically.

  • Design of a Capacitive Coupler for Underwater Wireless Power Transfer Focused on the Landing Direction of a Drone

    Yasumasa NAKA  Masaya TAMURA  

     
    PAPER-Electromagnetic Theory

      Pubricized:
    2023/10/13
      Vol:
    E107-C No:3
      Page(s):
    66-75

    This paper presents the design of a capacitive coupler for underwater wireless power transfer focused on the landing direction of a drone. The main design feature is the relative position of power feeding/receiving points on the coupler electrodes, which depends on the landing direction of the drone. First, the maximum power transfer efficiencies of coupled lines with different feeding positions are derived in a uniform dielectric environment, such as that realized underwater. As a result, these are formulated by the coupling coefficient of the capacitive coupler, the unloaded qualify factor of dielectrics, and hyperbolic functions with complex propagation constants. The hyperbolic functions vary depending on the relative positions and whether these are identical or opposite couplers, and the efficiencies of each coupler depend on the type of water, such as seawater and tap water. The design method was demonstrated and achieved the highest efficiencies of 95.2%, 91.5%, and 85.3% in tap water at transfer distances of 20, 50, and 100 mm, respectively.

  • Precoder Optimization Using Data Correlation for Wireless Data Aggregation

    Ayano NAKAI-KASAI  Naoyuki HAYASHI  Tadashi WADAYAMA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E107-B No:3
      Page(s):
    330-338

    In this paper, we consider precoder design for wireless data aggregation in sensor networks. The precoder optimization problem can be formulated as minimization of mean squared error under transmit power and block diagonal constraints. We include statistical correlation of data into the optimization problem, which is appeared in typical applications but is ignored in conventional designing methods. We propose precoder optimization algorithms based on projected gradient descent with projection onto the constraint sets. The proposed method can achieve better performance than the conventional methods that do not incorporate data correlation, especially when data are highly correlated. We also extend the proposed approach to the context of over-the-air computation.

  • A Reconstruction of Circular Binary String Using Substrings and Minimal Absent Words

    Takahiro OTA  Akiko MANADA  

     
    PAPER-Source Coding and Data Compression

      Pubricized:
    2023/09/05
      Vol:
    E107-A No:3
      Page(s):
    409-416

    A circular string formed by connecting the first and the last symbols of a string is one of the simplest sequence forms, and it has been used for many applications such as data compression and fragment assembly problem. A sufficient condition on the lengths of substrings with frequencies for reconstruction of an input circular binary string is shown. However, there are no detailed descriptions on the proof of the sufficient condition and reconstruction algorithm. In this paper, we prove a necessary and sufficient condition on the lengths of substrings with frequencies for reconstruction of the circular string. We show the length is shorter than that of previous study for some circular strings. For improving the length, we use minimal absent words (MAWs) for given substrings of length k, and we propose a new construction algorithm of MAWs of length h(>k) while a conventional construction algorithm of MAWs can construct MAWs of length l(≤k). Moreover, we propose reconstruction algorithm of an input circular string for given substrings satisfying the new condition.

41-60hit(5768hit)