The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] LTS(62hit)

41-60hit(62hit)

  • Efficient Test Generation Using Redundancy Identification

    Sangyoon HAN  Sungho KANG  

     
    LETTER-Fault Tolerance

      Vol:
    E83-D No:9
      Page(s):
    1814-1815

    To accomplish an efficient test pattern generation, the isomorphism identification algorithm and the pseudo dominator identification algorithm are developed which are used to identify redundant faults efficiently. Results show that test pattern generation using these algorithms is very efficient.

  • Evaluation of Two Load-Balancing Primary-Backup Process Allocation Schemes

    Heejo LEE  Jong KIM  Sung Je HONG  

     
    PAPER-Fault Tolerant Computing

      Vol:
    E82-D No:12
      Page(s):
    1535-1544

    In this paper, we show two process allocation schemes to tolerate multiple faults when the primary-backup replication method is used. The first scheme, called multiple backup scheme, is running multiple backup processes for each process to tolerate multiple faults. The second scheme, called regenerative backup scheme, is running only one backup process for each process, but re-generates backup processes for processes that do not have a backup process after a fault occurrence to keep the primary-backup process pair available. In both schemes, we propose heuristic process allocation methods for balancing loads in spite of the occurrence of faults. Then we evaluate and compare the performance of the proposed heuristic process allocation methods using simulation. Next, we analyze the reliability of two schemes based on their fault-tolerance capability. For the analysis of fault-tolerance capability, we find the degree of fault tolerance for each scheme. Then we find the reliability of each scheme using Markov chains. The comparison results of two schemes indicate that the regenerative single backup process allocation scheme is more suitable than the multiple backup allocation scheme.

  • Optimal Time Broadcasting Schemes in Faulty Star Graphs

    Aohan MEI  Feng BAO  Yukihiro HAMADA  Yoshihide IGARASHI  

     
    PAPER

      Vol:
    E82-A No:5
      Page(s):
    722-732

    We propose two fault-tolerant broadcasting schemes in star graphs. One of the schemes can tolerate up to n2 faults of the crash type in the n-star graph. The other scheme can tolerate up to (n3d1)/2 faults of the Byzantine type in the n-star graph, where d is the smallest positive integer satisfying nd!. Each of the schemes is designed for the single-port mode, and it completes the broadcasting in O(n log n) time. These schemes are time optimal. For the former scheme we analyze the reliability in the case where faults of the crash type are randomly distributed. It can tolerate (n!)α faults randomly distributed in the n-star graph with a high probability, where α is any constant less than 1.

  • An Analysis of the Relationship between IDDQ Testability and D-Type Flip-Flop Structure

    Yukiya MIURA  Hiroshi YAMAZAKI  

     
    PAPER-Fault Tolerant Computing

      Vol:
    E81-D No:10
      Page(s):
    1072-1078

    This paper describes IDDQ testability for bridging faults in a variety of flip-flops. The flip-flop is a basic element of the sequential circuit and there are various structures even for the same type. In this paper, we use five kinds of master-slave D-type flip-flops as the circuit under test. Target faults are two-line resistive bridging faults extracted from a circuit layout. A flip-flop with a deliberately introduced bridging fault is simulated by the SPICE simulator. Simulation results show that IDDQ testing cannot detect faults existing at specific points in some flip-flops, and this problem depends on the flip-flop structure. However, IDDQ testing has high fault coverage ( 98%) compared with traditional logic testing. We also examine performances of fully IDDQ testable flip-flops.

  • I-PROT: ISDN Protocol Fault Detection System

    Hikaru SUZUKI  Narumi TAKAHASHI  

     
    PAPER-Protocol

      Vol:
    E80-B No:6
      Page(s):
    888-893

    This paper discribes the ISDN PROtocol Testing system (I-PROT). The system consists of translation & distribution function block, layer-2 fault surveillance function block, layer-3 fault surveillance function block, cause detection function block, and HMI. The system receives data from protocol monitors and detects the error recovery sequences, (we call "quasi-normal sequences"), as well as the sequences that do not follow the protocol specifications, (we call "abnormal sequences"). In the layer-3 fault surveillance function block, we use the protocol specification database whose records are converted from the state transition rules and added the judgment which classify the rules into the "normal" and "quasi-normal." We also show the classification method which is applicable to all connection-oriented protocol specifications. In the layer-2 fault surveillance function block, we explain the another easy detecting method. In the cause function block, we describe the partial pattern matching method to relate the protocol fault to the real cause of the fault. We built the prototype of the I-PROT and examine the turn around time (TAT) performance. As a result of the examination, we find the TAT of the I-PROT is directly proportional to the number of the frames analyzed by the system, and the system can reduce the load of the conventional manual analysis by the maintenance personnel.

  • Time-Action Alternating Model for Timed Processes and Its Symbolic Verification of Bisimulation Equivalence

    Akio NAKATA  Teruo HIGASHINO  Kenichi TANIGUCHI  

     
    PAPER-Concurrent Systems

      Vol:
    E80-A No:2
      Page(s):
    400-406

    Verification of timed bisimulation equivalence is generally difficult because of the state explosion caused by concrete time values. In this paper, we propose a verification method to verify timed bisimulation equivalence of two timed processes using a symbolic technique similar to [1]. We first propose a new model of timed processes, Alternating Timed Symbolic Labelled Transition System (A-TSLTS). In an A-TSLTS, each state has some parameter variables, whose values determine its behaviour. Each transition in an A-TSLTS has a quard predicate. The transition is executable if and only if its guard predicate is true underspecified parameter values. In the proposed method, we can obtain the weakest condition for a state-pair in a finite A-TSLTS, which the parameter values in the weakest condition must satisfy to make the state-pair be timed bisimulation equivalent.

  • A Method of Multiple Fault Diagnosis in Sequential Circuits by Sensitizing Sequence Pairs

    Nobuhiro YANAGIDA  Hiroshi TAKAHASHI  Yuzo TAKAMATSU  

     
    PAPER-Testing/Checking

      Vol:
    E80-D No:1
      Page(s):
    28-37

    This paper presents a method of multiple fault diagnosis in sequential circuits by input-sequence pairs having sensitizing input pairs. We, first, introduce an input-sequence pair having sensitizing input pairs to diagnose multiple faults in a sequential circuit represented by a combinational array model. We call such input-sequence pair the sensitizing sequence pair in this paper. Next, we describe a diagnostic method for multiple faults in sequential circuits by the sensitizing sequence pair. From a relation between a sensitizing path generated by a sensitizing sequence pair and a subcircuit, the proposed method deduces the suspected faults for the subcircuits, one by one, based on the responses observed at primary outputs without probing any internal line. Experimental results show that our diagnostic method identifies fault locations within small numbers of suspected faults.

  • A Learning Algorithm for Fault Tolerant Feedforward Neural Networks

    Nait Charif HAMMADI  Hideo ITO  

     
    PAPER-Redundancy Techniques

      Vol:
    E80-D No:1
      Page(s):
    21-27

    A new learning algorithm is proposed to enhance fault tolerance ability of the feedforward neural networks. The algorithm focuses on the links (weights) that may cause errors at the output when they are open faults. The relevances of the synaptic weights to the output error (i.e. the sensitivity of the output error to the weight fault) are estimated in each training cycle of the standard backpropagation using the Taylor expansion of the output around fault-free weights. Then the weight giving the maximum relevance is decreased. The approach taken by the algorithm described in this paper is to prevent the weights from having large relevances. The simulation results indicate that the network trained with the proposed algorithm do have significantly better fault tolerance than the network trained with the standard backpropagation algorithm. The simulation results show that the fault tolerance and the generalization abilities are improved.

  • Reuse Based Specification Support Method Using Mathematical Similarity

    Ushio YAMAMOTO  Eun-Seok LEE  Norio SHIRATORI  

     
    PAPER

      Vol:
    E79-A No:11
      Page(s):
    1752-1759

    In this paper, we discuss both effective approaches in specification process, formal specification and reuse, and focus on providing an integrated and systematic supportbased on them. Preparing the specification model which mediates an image of the designer and another representation of it in formal method, the designer can specify the target system incrementally and smoothly. As for the specification model, we employ LTS on the early step of specification process because of its understandability for the designer. Moreover, reuse of specification leads to reduction of the cost and time, defining retrieval mechanism of reusable cases from database by mathematically calculating similarity of them. For the reuse mechanism, we define a new concept of similarity on LTS as the criterion of case retrieval, which enables more flexible matching between the besigner's requirement and the existing case than any other traditional schema on LTS, and show the case retrieval algorithm. Integration of two approaches brings us the great improvement of the productivity on system development.

  • On the Multiple Bridge Fault Diagnosis of Baseline Multistage Interconnection Networks*

    Fabrizio LOMBARDI  Nohpill PARK  Susumu HORIGUCHI  

     
    PAPER-Fault Diagnosis/Tolerance

      Vol:
    E79-D No:8
      Page(s):
    1168-1179

    This paper proposes new algorithms for diagnosing (detection, identification and location) baseline multistage interconnection networks (MIN) as one of the basic units in a massively parallel system. This is accomplished in the presence of single and multiple faults under a new fault model. This model referred to as the geometric fault model, considers defective crossing connections which are located between adjacent stages, internally to the MIN (therefore, a fault corresponds to a physical bridge fault between two connections). It is shown that this type of fault affects the correct geometry of the network, thus requiring a different testing approach than previous methods. Initially, an algorithm which detects the presence of bridge faults (both in the single and multiple fault cases), is presented. For a single bridge fault, the proposed algorithm locates the fault except in an unique pathological case under which it is logically impossible to differentiate between two equivalent locations of the fault (however, the switching element affected by this fault is uniquely located). The proposed algorithm requires log2 N test vectors to diagnose the MIN as fault free (where N is the number of input lines to the MIN). For fully diagnosing a single bridge fault, this algorithm requires at most 2 log2 N tests and terminates when multiple bridge faults are detected. Subsequently, an algorithm which locates all bridge faults is given. The number of required test vectors is O(N). Fault location of each bridge fault is accomplished in terms of the two lines in the bridge and the numbers of the stages between which it occurs. Illustrative examples are given.

  • Reliability of Hypercubes for Broadcasting with Random Faults

    Feng BAO  Yoshihide IGARASHI  Sabine R. OHRING  

     
    PAPER-Fault Tolerant Computing

      Vol:
    E79-D No:1
      Page(s):
    22-28

    In this paper we analyze the reliability of a simple broadcasting scheme for hypercubes (HCCAST) with random faults. We prove that HCCAST (n) (HCCAST for the n-dimensional hypercube) can tolerate Θ(2n/n) random faulty nodes with a very high probability although it can tolerate only n - 1 faulty nodes in the worst case. By showing that most of the f-fault configurations of the n dimensional hypercube cannot make HCCAST (n) fail unless f is too large, we illustrate that hypercubes are inherently strong enough for tolerating random faults. For a realistic n, the reliability of HCCAST (n) is much better than that of the broadcasting algorithm described in [6] although the latter can asymptotically tolerate faulty links of a constant fraction of all the links. Finally, we compare the fault-tolerant performance of the two broadcasting schemes for n = 15, 16, 17, 18, 19, 20, and we find that for those practical valuse, HCCAST (n) is very reliable.

  • Broadcasting in Hypercubes with Randomly Distributed Byzantine Faults

    Feng BAO  Yoshihide IGARASHI  Keiko KATANO  

     
    PAPER-Reliability and Fault Analysis

      Vol:
    E78-A No:9
      Page(s):
    1239-1246

    We study all-to-all broadcasting in hypercubes with randomly distributed Byzantine faults. We construct an efficient broadcasting scheme BC1-n-cube running on the n-dimensional hypercube (n-cube for short) in 2n rounds, where for communication by each node of the n-cube, only one of its links is used in each round. The scheme BC1-n-cube can tolerate (n-1)/2 Byzantine faults of nodes and/or links in the worst case. If there are exactly f Byzantine faulty nodes randomly distributed in the n-cabe, BC1-n-cube succeeds with a probability higher than 1(64nf/2n) n/2. In other words, if 1/(64nk) of all the nodes(i.e., 2n/(64nk) nodes) fail in Byzantine manner randomly in the n-cube, then the scheme succeeds with a probability higher than 1kn/2. We also consider the case where all nodes are faultless but links may fail randomly in the n-cube. Broadcasting by BC1-n-cube is successful with a probability hig her than 1kn/2 provided that not more than 1/(64(n1)k) of all the links in the n-cube fail in Byzantine manner randomly. For the case where only links may fail, we give another broadcasting scheme BC2-n-cube which runs in 2n2 rounds. Broadcasting by BC2-n-cube is successful with a high probability if the number of Byzantine faulty links randomly distributed in the n-cube is not more than a constant fraction of the total number of links. That is, it succeeds with a probability higher than 1nkn/2 if 1/(48k) of all the links in the n-cube fail randomly in Byzantine manner.

  • A Study for Testability of Redundant Faults in Combinational Circuits Using Delay Effects

    Xiangqiu YU  Hiroshi TAKAHASHI  Yuzo TAKAMATSU  

     
    PAPER

      Vol:
    E78-D No:7
      Page(s):
    822-829

    Some undetectable stuck-at faults called the redundant faults are included in practical combinational circuits. The redundant fault does not affect the functional behavior of the circuit even if it exists. The redundant fault, however, causes undesirable effects to the circuit such as increase of delay time and decrease of testability of the circuit. It is considered that some redundant faults may cause the logical defects in the future. In this paper, firstly, we study the testability of the redundant fault in the combinational circuit by using delay effects. Secondly, we propose a method for generating a test-pair of a redundant fault by using an extended seven-valued calculus, called TGRF (Test-pair Generation for Redundant Fault). TGRF generates a dynamically sensitizable path for the target line which propagates the change in the value on the target line to a primary output. Finally, we show experimental results on the benchmark circuits under the assumptions of the unit delay and the fanout weighted delay models. It shows that test-pairs for some redundant faults are generated theoretically.

  • A Support Method for Specification Process Based on LTSs

    Ushio YAMAMOTO  Atsushi TOGASHI  Norio SHIRATORI  

     
    PAPER

      Vol:
    E77-A No:10
      Page(s):
    1656-1662

    This paper presents a support method for specifying communication systems. Generally, a set of requirements for a target system is partial and ambiguous to construct the whole system, namely it lacks certain necessary descriptions for the target system. To attack this problem, our method enables a designer to obtain such necessary descriptions from specifications stored in a knowledge base, namely by reusing specifications, and helps the designer to specify the target system completely. In our support method, we adopt labelled transition systems (LTSs) which are state transition graphs and are shared as a common notion by most FDTs. Therefore, our method is the common approach to FDTs. We propose a new idea about similarity berween LTSs, and propose an algorithm to suggest similar LTSs to the designer.

  • An Effective Application of Net-Theory to Communication Protocol Development

    Norio SHIRATORI  Eun-Seok LEE  Ken TERUYA  

     
    INVITED PAPER

      Vol:
    E77-A No:10
      Page(s):
    1588-1593

    This paper presents an effective application of Net-theory for all the stages of the communication protocol development process. Net-theory provides a basic mathematical model and tool for development of communication protocol. The special usability of Net-theory is that 1) visual representation of the system's stadic/dynamic structure, so that users may easily understand the represented contents, 2) formal specifications based on mathematical basis of Net-theory admit automatic verification, implementation and conformance testing. We have seen that Net-theory which has the above usability can provide a systematic and advanced paradigm for effective communication protocol development.

  • A Fault Model for Multiple-Valued PLA's and Its Equivalences

    Yasunori NAGATA  Masao MUKAIDONO  

     
    PAPER-Computer Aided Design (CAD)

      Vol:
    E77-A No:9
      Page(s):
    1527-1534

    In this paper, a fault model for multiple-valued programmable logic arrays (MV-PLAs) is proposed and the equivalences of faults of MV-PLA's are discussed. In a supposed multiple-valued NOR/TSUM PLA model, it is shown that multiple-valued stuck-at faults, multiple-valued bridging faults, multiple-valued threshold shift faults and other some faults in a literal generator circuit are equivalent or subequivalent to a multiple crosspoint fault in the NOR plane or a multiple fault of weights in the TSUM plane. These results lead the fact that multiple-valued test vector set which indicates all multiple crosspoint fault and all multiple fault of weights also detects above equivalent or subequivalent faults in a MV-PLA.

  • Theory and Techniques for Testing Check Bits of RAMs with On-Chip ECC

    Manoj FRANKLIN  Kewal K. SALUJA  

     
    PAPER-Fault Tolerant Computing

      Vol:
    E76-D No:10
      Page(s):
    1243-1252

    As RAMs become dense, their reliability reduces because of complex interactions between memory cells and soft errors due to alpha particle radiations. In order to rectify this problem, RAM manufacturers have started incorporating on-chip (built-in) ECC. In order to minimize the area overhead of on-chip ECC, the same technology is used for implementing the check bits and the information bits. Thus the check bits are exposed to the same failure modes as the information bits. Furthermore, faults in the check bits will manifest as uncorrectable multiple errors when a soft error occurs. Therefore it is important to test the check bits for all failure modes expected of other cells. In this paper, we formulate the problem of testing RAMs with on-chip ECC capability. We than derive necessary and sufficient conditions for testing the check bits for arbitrary and adjacent neighborhood pattern sensitive faults. We also provide an efficient solution to test a memory array of N bits (including check bits) for 5-cell neighborhood pattern sensitive faults in O (N) reads and writes, with the check bits also tested for the same fault classes as the information bits.

  • Generalized Marching Test for Detecting Pattern Sensitive Faults in RAMs

    Masahiro HASHIMOTO  Eiji FUJIWARA  

     
    PAPER

      Vol:
    E76-D No:7
      Page(s):
    809-816

    Since semiconductor memory chip has been growing rapidly in its capacity, memory testing has become a crucial problem in RAMs. This paper proposes a new RAM test algorithm, called generalized marching test (GMT), which detects static and dynamic pattern sensitive faults (PSF) in RAM chips. The memory array with N cells is partitioned into B sets in which every two cells has a cell-distance of at least d. The proposed GMT performs the ordinary marching test in each set and finally detects PSF having cell-distance d. By changing the number of partitions B, the GMT includes the ordinary marching test for B1 and the walking test for BN. This paper demonstrates the practical GMT with B2, capable of detecting PSF, as well as other faults, such as cell stuck-at faults, coupling faults, and decoder faults with a short testing time.

  • Critical Slice-Based Fault Localization for Any Type of Error

    Takao SHIMOMURA  

     
    PAPER-Software Systems

      Vol:
    E76-D No:6
      Page(s):
    656-667

    Existing algorithmic debugging methods which can locate faults under the guidance of a system have a number of shortcomings. For example, some cannot be applied to imperative languages with side effects; some can locate a faulty function but cannot locate a faulty statement; and some cannot detect faults related to missing statements. This paper presents an algorithmic critical slice-based fault-locating method for imperative languages. Program faults are first classified into two categories: wrong-value faults and missing-assignment faults. The critical slice with respect to a variable-value error is a set of statements such that (1) a wrong-value fault contained in any instruction in the critical slice may have caused that variable-value error, and (2) a wrong-value fault contained in any instruction outside the critical slice could never have caused that variable-value error. The paper also classifies errors found during program testing into three categories: wrong-output errors, missing-output errors, and infinite-loop errors with no output. It finally shows that it is possible to algorithmically locate any fault, including missing statements, for each type of error.

  • Evaluation of Bonding Silicon-on-Insulator Films with Deep-Level Transient Spectroscopy Measurements

    Akira USAMI  Taichi NATORI  Akira ITO  Shun-ichiro ISHIGAMI  Yutaka TOKUDA  Takao WADA  

     
    PAPER

      Vol:
    E75-C No:9
      Page(s):
    1049-1055

    Silicon-on-insulator (SOI) films fabricated by the wafer bonding technique were studies with capacitance-voltage (C-V) and deep-level transient spectroscopy (DLTS) measurements. For our expereiments, two kinds of SOI wafers were prepared. Many voids were present in one sample (void sample), but few voids were in the other sample (no void sample). Before annealing, two DLTS peaks (Ec-0.48 eV and Ec-0.38 eV) were observed in the SOI layer of the void sample. For the no void sample, different two DLTS peaks (Ec-0.16 eV and Ec-0.12 eV) were observed. The trap with an activation energy of 0.48 eV was annealed out after 450 annealing for 24 h. On the other hand, other traps were annealed out after 450 annealing for several hours. During annealing at 450, thermal donors (TDs) were formed simultaneously. In usual CZ silicon, a DLTS peak of TD was observed around 60 K. In the no void sample, however, a TD peak was observed at a temperature lower than 30 K. This TD was annihilated by rapid thermal annealing. This suggests that the TD with a shallower level was formed in the no void sample after annealing at 450.

41-60hit(62hit)