The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] PA(8249hit)

7841-7860hit(8249hit)

  • Analysis of Head and Eye Coordination in Patients with Alzheimer's Desease

    Mitsuho YAMADA  Mitsuru FUJII  Hitoshi HONGO  Shinji MURAKAMI  Norihito NAKANO  Kenya UOMORI  Kumiko UTSUMI  Hiroshi YOSHIMATSU  Jiro MIYAZAWA  Keiichi UENO  Ryo FUKATSU  Naohiko TAKAHATA  

     
    PAPER-Medical Electronics and Medical Information

      Vol:
    E77-D No:6
      Page(s):
    705-719

    With the advent of an aging society, the incidence of Alzheimer-type dementia (hereinafter referred to as AD for convenience) has drastically increased. Compared with classic cerebrovascular dementia, AD requires different therapeutic modalities. Despite such differences, it is difficult to establish a differential diagnosis of AD and cerebrovascular dementia. In the present paper, we analyze the neuropsychological symptoms and signs associated with AD, such as visual cognitive dysfunction, with particular attention to head and eye coordination. The subjects were allowed to gaze at targets disposed 1 m away and at a visual angle of 25 and 50 in order to compare healthy volunteers and patients with senile dementias such as multi-infarct dementia (MID). As a consequence, patients with AD presented clinical manifestations not seen in patients with other senile dementias; that is, (1) an increase in stepwise eye movement, (2) anisotropy in the velocity of right-directional and left-directional eye movements, (3) a decrease in the velocity of head movements (4) incomplete gaze, and (5) decreased head share.

  • High-Performance Multiprocessor Implementation for Block-State Realization of State-Space Digital Filters

    Yoshitaka TSUNEKAWA  Kyousiro SEKI  

     
    PAPER-Digital Signal Processing

      Vol:
    E77-A No:6
      Page(s):
    944-949

    This paper proposes high-performance multiprocessor implementation for real-time one-dimensional (1-D) statespace digital filters (SSDFs). The block-state realization of SSDFs (BSRDF) is suitable for their high speed realization and gives the characteristics of high accuracy. Previously we proposed a VLSI-oriented highly parallel architecture for BSRDF. For the purpose of speeding up and reducing hardware complexity, the distributed arithmetic, of which processing time depends only on word length, is applied to this architecture. It is implemented as a 2-D SIMD processor array, and the processor consists of n homogeneous processing elements (PEs), n being filter order. The high sampling rate of one or more hundred MHz becomes possible for high filter order. Moreover, the number of I/O data per processor can be a small fixed value for any filter order, and the number of gates can also be smaller than that in the case of using multiplier. Consequently, this proposed system can be implemented easily even in the present VLSI environment.

  • Beam Tracing Frame for Beam Propagation Analysis

    Ikuo TAKAKUWA  Akihiro MARUTA  Masanori MATSUHARA  

     
    LETTER-Opto-Electronics

      Vol:
    E77-C No:6
      Page(s):
    1009-1011

    We propose a beam tracing frame which shifts together with either the guiding structure or the beam propagation in optical circuits. This frame is adaptive to the beam propagation analysis based on the finite-element method and can reduce the computational window size.

  • Relaxation-Based Algorithms for Bipolar Circuit Analysis

    Masaki ISHIDA  Koichi HAYASHI  Masakatsu NISHIGAKI  Hideki ASAI  

     
    PAPER-Modeling and Simulation

      Vol:
    E77-A No:6
      Page(s):
    1023-1027

    This paper describes the relaxation-based algorithms with the dynamic partitioning technique for bipolar circuit analysis. In this technique, a circuit is partitioned dynamically based on the consideration of the operating region of specified bipolar devices. This technique has been used already in the waveform relaxation method. In this paper, the dynamic circuit partitioning technique is implemented in the Iterated Timing Analysis (ITA). First, the dynamic partitioning method and its validity are described. Next, the present ITA is applied to the transient simulation of several digital bipolar circuits and compared with the waveform relaxation method.

  • Optimal Filtering Algorithm Using Covariance Information in Linear Continuous Distributed Parameter Systems

    Seiichi NAKAMORI  

     
    PAPER-Control and Computing

      Vol:
    E77-A No:6
      Page(s):
    1050-1057

    This paper presents an optimal filtering algorithm using the covariance information in linear continuous distributed parameter systems. It is assumed that the signal is observed with additive white Gaussian noise. The autocovariance function of the signal, the variance of white Gaussian noise, the observed value and the observation matrix are used in the filtering algorithm. Then, the current filter has an advantage that it can be applied to the case where a partial differential equation, which generates the signal process, is unknown.

  • Parametric Rotary Speed Sensor of Robust Motor Control

    Emenike C. EJIOGU  Kazuhiko ONO  Yorimoto TANNO  

     
    LETTER-Instrumentation and Control

      Vol:
    E77-C No:6
      Page(s):
    1012-1017

    If one of the R, L, or C Parameter of an RLC parallel circuit is changed periodically, under certain conditions, an oscillation called Parametric oscillation occurs. If one of remaining circuit elements is made to change due to an external cause (e.g. an external electric or magnetic field), then the parametric oscillation will experience some modulation. This modulation process and the subsequent demodulation can be exploited to create several types of sensors. In this letter, we describe the features of a new parametric magnetic speed sensor and its application in Induction motor robust control.

  • Three-Dimensionally Fully Space Constructible Functions

    Makoto SAKAMOTO  Katsushi INOUE  Itsuo TAKANAMI  

     
    LETTER-Artificial Intelligence and Cognitive Science

      Vol:
    E77-D No:6
      Page(s):
    723-725

    There have been several interesting investigations on the space functions constructed by one-dimensional or two-dimensional Turing machines. On the other hand, as far as we know, there is no investigation about the space functions constructed by three-dimensional Turing machines. In this paper, we investigate about space constructibility by three-dimensional deterministic Turing machines with cubic inputs, and show that the functions log*n and log(k)n, k1, are fully space constructible by these machines.

  • Computational Complexity of Manipulating Binary Decision Diagrams

    Yasuhiko TAKENAGA  Shuzo YAJIMA  

     
    PAPER-Algorithm and Computational Complexity

      Vol:
    E77-D No:6
      Page(s):
    642-647

    An Ordered Binary Decision Diagram (BDD) is a graph representation of a Boolean function. According to its good properties, BDD's are widely used in various applications. In this paper, we investigate the computational complexity of basic operations on BDD's. We consider two important operations: reduction of a BDD and binary Boolean operations based on BDD's. This paper shows that both the reduction of a BDD and the binary Boolean operations based on BDD's are NC1-reducible to REACHABILITY. That is, both of the problems belong to NC2. In order to extend the results to the BDD's with output inverters, we also considered the transformations between BDD's and BDD's with output inverters. We show that both of the transformations are also NC1-reducible to REACHBILITY.

  • Researches on Biological and Electromagnetic Environments in RF and Microwave Regions in Japan

    Yoshifumi AMEMIYA  

     
    INVITED PAPER

      Vol:
    E77-B No:6
      Page(s):
    693-698

    This paper surveys the researches on biological and electeromagnetic environments in RF (radio frequency) and microwave regions in Japan. Publicized research reports on biological objectives, evaluation of exposure rate, electromagnetic environments and guideline for the protection from radio wave nuisances are briefly introduced. Some researches on the evaluation of the exposure rate caused by the near field effect of portable radio transceiver are reviewed. Radio frequency exposer protection guidelines in Japan are also described.

  • Finite State Translation Systems and Parallel Multiple Context-Free Grammars

    Yuichi KAJI  Hiroyuki SEKI  Tadao KASAMI  

     
    PAPER-Automata, Languages and Theory of Computing

      Vol:
    E77-D No:6
      Page(s):
    619-630

    Finite state translation systems (fsts') are a widely studied computational model in the area of tree automata theory. In this paper, the string generating capacities of fsts' and their subclasses are studied. First, it is shown that the class of string languages generated by deterministic fsts' equals to that of parallel multiple context-free grammars, which are an extension of context-free grammars. As a corollary, it can be concluded that the recognition problem for a deterministic fsts is solvable in O(ne1)-time, where n is the length of an input word and e is a constant called the degree of the deterministic fsts'. In contrast to the latter fact, it is also shown that nondeterministic monadic fsts' with state-bound 2 can generate an NP-complete language.

  • Dynamically Overlapped Partitioning Technique to Implement Waveform Relaxation Simulation of Bipolar Circuits

    Vijaya Gopal BANDI  Hideki ASAI  

     
    LETTER-Nonlinear Circuits and Systems

      Vol:
    E77-A No:6
      Page(s):
    1080-1084

    A new efficient waveform relaxation technique based on dynamically overlapped partitioning scheme is presented. This overlapped partitioning method enables the application of waveform relaxation technique to bipolar VLSI circuits. Instead of fixed overlapping, we select the depth of overlapping dynamically based on the sensitivity criteria. By minimizing the overlapped area, we could reduce the additional computational overhead which results from overlapping the partitions. This overlapped waveform relaxation method has better convergence properties due to smaller error introduced at each step compared with standard relaxation techniques. When overlapped partitioning is used in the case of digital circuits, the waveforms obtained after first iteration are nearly accurate. Therefore, by using these waveforms as initial guess waveforms for the second iterations we can reduce Newton-Raphson iterations at each time point.

  • Study on Mutual Coupling between Two Ports of Dual Slot-Coupled Circular Microstrip Antennas

    Yasushi MURAKAMI  Wataru CHUJO  Isamu CHIBA  Masayuki FUJISE  

     
    PAPER-Antennas and Propagation

      Vol:
    E77-B No:6
      Page(s):
    815-822

    This paper theoretically and experimentally investigates the mutual coupling between two ports of dual slot-coupled circular microstrip antennas. Presented are the effects of feed configuration, slot length, slot offset from the circular disk center, circular disk radius and the dielectric constant of the feed substrate on the mutual coupling. Based on these results, the antenna with low mutual coupling was designed. The mutual coupling of under -35dB at the resonant frequency was obtained.

  • Adaptive Array Antenna Based on Spatial Spectral Estimation Using Maximum Entropy Method

    Minami NAGATSUKA  Naoto ISHII  Ryuji KOHNO  Hideki IMAI  

     
    PAPER

      Vol:
    E77-B No:5
      Page(s):
    624-633

    An adaptive array antenna can be considered as a useful tool of combating with fading in mobile communications. We can directly obtain the optimal weight coefficients without updating in temporal sampling, if the arrival angles and signal-to-noise ratio (SNR) of the desired and the undesired signals can be accurately estimated. The Maximum Entropy Method (MEM) can estimate the arrival angles, and the SNR from spatially sampled signals by an array antenna more precisely than the Discrete Fourier Transform (DFT). Therefore, this paper proposes and investigates an adaptive array antenna based on spatial spectral estimation using MEM. We call it MEM array. In order to reduce complexity for implementation, we also propose a modified algorithm using temporal updating as well. Furthermore, we propose a method of both improving estimation accuracy and reducing the number of antenna elements. In the method, the arrival angles can be approximately estimated by using temporal sampling instead of spatial sampling. Computer simulations evaluate MEM array in comparison with DFT array and LMS array, and show improvement owing to its modified algorithm and performance of the improved method.

  • Motion Artifact Elimination Using Fuzzy Rule Based Adaptive Nonlinear Filter

    Tohru KIRYU  Hidekazu KANEKO  Yoshiaki SAITOH  

     
    PAPER

      Vol:
    E77-A No:5
      Page(s):
    833-838

    Myoelectric (ME) signals during dynamic movement suffer from motion arifact noise caused by mechanical friction between electrodes and the skin. It is difficult to reject artifact noises using linear filters, because the frequency components of the artifact noise include those of ME signals. This paper describes a nonlinear method of eliminating artifacts. It consists of an inverse autoregressive (AR) filter, a nonlinear filter, and an AR filter. To deal with ME signals during dynamic movement, we introduce an adaptive procedure and fuzzy rules that improve the performance of the nonlinear filter for local features. The result is the best ever reported elimination performance. This fuzzy rule based adaptive nonlinear artifact elimination filter will be useful in measurement of ME signals during dynamic movement.

  • Performance of a Time Slot Searching Mechanism in Multi-Rate Circuit Switching Systems

    Seung Kye ROH  Kwang Ho KOOK  Jae Sup LEE  Min Young CHUNG  Dan Keun SUNG  

     
    PAPER-Communication Networks and Service

      Vol:
    E77-B No:5
      Page(s):
    650-655

    The blocking probabilities of n64Kb/s multi-slot calls are generally much higher than that of single slot calls. In order to improve these blocking probabilities of multi-slot calls, we propose a scheme to limit the number of time slots to be searched for lower rate calls. We analyze the performance of our scheme in a double-buffered time-space-time switching network which accommodates multi-slot calls as well as single-slot calls. The proposed method yields the reduced blocking probabilities of multi-slot calls, the increased traffic handling capacity and the reduced CPU processing load, compared with those of the conventional methods.

  • Adaptive Receiver Consisting of MLSE and Sector-Antenna Diversity for Mobile Radio Communications

    Hidekazu MURATA  Susumu YOSHIDA  Tsutomu TAKEUCHI  

     
    PAPER

      Vol:
    E77-B No:5
      Page(s):
    573-579

    A receiving system suitable for multipath fading channels with co-channel interference is described. This system is equipped with both an M-sectored directional antenna and an adaptive equalizer to mitigate the influence due to multipath propagation and co-channel interference. By using directional antennas, this receiving system can separate desirable signals from undesirable signals, such as multipath signals with longer delay time and co-channel interference. It accepts multipath signals which can be equalized by maximum likelihood sequence estimation, and rejects both multipath signals with longer delay time and co-channel interference. Based on computer simulation results, the performance of the proposed receiving system is analyzed assuming simple propagation models with Rayleigh-distributed multipath signals and co-channel interference.

  • Multicarrier 16QAM System in Land Mobile Communications

    Youko OMORI  Hideichi SASAOKA  

     
    PAPER

      Vol:
    E77-B No:5
      Page(s):
    634-640

    The paper proposes a new multicarrier 16QAM system for high-quality and high-bit-rate transmission with high spectral efficiency in land mobile radio communications. The proposed system uses a multicarrier transmission scheme to provide immunity against frequency-selective fading distortion. It also uses pilot-symbol-aided 16QAM to increase spectral efficiency, and it combines space diversity and FEC with maximum likelihood decoding to improve the bit error rate (BER) performance. Computer simulation shows that a BER of less than 10-4 is obtained over frequency-selective fading channels with rms delay spread of less than 5.4µs. Using a bandwidth of 200kHz the proposed system can achieve high-quality transmission with a total information rate of 256kbit/s.

  • Distributed Load Balancing Schemes for Parallel Video Encoding System

    Zhaochen HUANG  Yoshinori TAKEUCHI  Hiroaki KUNIEDA  

     
    PAPER-Parallel/Multidimensional Signal Processing

      Vol:
    E77-A No:5
      Page(s):
    923-930

    We present distributed load balancing mechanisms implemented on multiprocessor systems for real time video encoding, which dynamically equalize load amounts among PE's to cope with extensive computing requirements. The loosely coupled multiprocessor system, e.g. a torus connected one, is treated as the objective system. Two decentralized controlled load balancicg algorithms are proposed, and mathematical analyses are provided to obtain some insights of our decentralized controlled mechanisms. We also prove the proposed algorithms are steady and effective theoretically and experimentally.

  • Parameter Estimation of Multivariate ARMA Processes Using Cumulants

    Yujiro INOUYE  Toyohiro UMEDA  

     
    INVITED PAPER

      Vol:
    E77-A No:5
      Page(s):
    748-759

    This paper addresses the problem of estimating the parameters of multivariate ARMA processes by using higher-order statistics called cumulants. The main objective in this paper is to extend the idea of the q-slice algorithm in univariate ARMA processes to multivariate ARMA processes. It is shown for a multivariate ARMA process that the MA coefficient matrices can be estimated up to postmultiplication of a permutation matrix by using the third-order cumulants and of an extended permutation matrix by using the fourth-order cumulants. Simulation examples are included to demonstrate the effectiveness of the proposed method.

  • Interpolatory Estimation of Multi-Dimensional Orthogonal Expansions with Stochastic Coefficients

    Takuro KIDA  Somsak SA-NGUANKOTCHAKORN  Kenneth JENKINS  

     
    PAPER-Digital Signal Processing

      Vol:
    E77-A No:5
      Page(s):
    900-916

    Relating to the problem of suppressing the immanent redundancy contained in an image with out vitiating the quality of the resultant approximation, the interpolation of multi-dimensional signal is widely discussed. The minimization of the approximation error is one of the important problems in this field. In this paper, we establish the optimum interpolatory approximation of multi-dimensional orthogonal expansions. The proposed approximation is superior, in some sense, to all the linear and the nonlinear approximations using a wide class of measures of error and the same generalized moments of these signals. Further, in the fields of information processing, we sometimes consider the orthonormal development of an image each coefficient of which represents the principal featurr of the image. The selection of the orthonormal bases becomes important in this problem. The Fisher's criterion is a powerful tool for this class of problems called declustering. In this paper, we will make some remarks to the problem of optimizing the Fisher's criterion under the condition that the quality of the approximation is maintained.

7841-7860hit(8249hit)