The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] PA(8249hit)

8001-8020hit(8249hit)

  • A Network-Topology-Independent Static Task Allocation Strategy for Massively Parallel Computers

    Takanobu BABA  Akehito GUNJI  Yoshifumi IWAMOTO  

     
    PAPER-Computer Networks

      Vol:
    E76-D No:8
      Page(s):
    870-881

    A network-topology-independent static task allocation strategy has been designed and implemented for massively parallel computers. For mapping a task graph to a processor graph, this strategy evaluates several functions that represent some intuitively feasible properties or the graphs. They include the connectivity with the allocated nodes, distance from the median of a graph, connectivity with candidate nodes, and the number of candidate nodes within a distance. Several greedy strategies are defined to guide the mapping process, utilizing the indicated function values. An allocation system has been designed and implemented based on the allocation strategy. In experiments we have defined about 1000 nodes in task graphs with regular and irregular topologies, and the same order of processors with mesh, tree, and hypercube topologies. The results are summarized as follows. 1) The system can yield 4.0 times better total communication costs than an arbitrary allocation. 2) It is difficult to select a single strategy capable of providing the best solutions for a wide range of task-processor combinations. 3) Comparison with hypercube-topology-dependent research indicates that our topology-independent allocator produces better results than the dependent ones. 4) The order of computaion time of the allocator is experimentally proved to be O (n2) where n represents the number of tasks.

  • Definition of Attributed Random Graph and Proposal of Its Applications

    Dong Su SEONG  Ho Sung KIM  Kyu Ho PARK  

     
    PAPER-Image Processing, Computer Graphics and Pattern Recognition

      Vol:
    E76-D No:8
      Page(s):
    919-925

    In this paper, we define an attributed random graph, which can be considered as a generalization of conventional ones, to include multiple attributes as well as numeric attribute instead of a single nominal attribute in random vertices and edges. Then we derive the probability equations for an attributed graph to be an outcome graph of the attributed random graph, and the equations for the entropy calculation of the attributed random graph. Finally, we propose the application areas to computer vision and machine learning using these concepts.

  • Effects of Air Gaps on Butt-Joints between Isotropic and Anisotropic Planar Waveguides

    Masashi HOTTA  Masahiro GESHIRO  Katsuaki KANOH  Haruo KANETAKE  

     
    PAPER-Opto-Electronics

      Vol:
    E76-C No:8
      Page(s):
    1345-1349

    Power transmission properties are investigated for a butt-joint which contains an air gap between an isotropic planar waveguide and an anisotropic one whose optical axis is lying in the plane defined by the propagation axis and the normal of the waveguide surface. New transmission coefficients are introduced for estimating the optical-power which is launched out into the gap from the incoming waveguide. Wave propagation through the gap is analyzed on the basis of the BPM concept. And the power transmitted across the interface between the gap and the outgoing waveguide is evaluated by means of the overlap integral of the field profiles. The effects of the air gap and the refractive index of filling liquid as well as axial displacement and angular misalignment are discussed on the basis of numerical results.

  • Interpolation of CT Slices for Laser Stereolithography

    Takanori NAGAE  Takeshi AGUI  Hiroshi NAGAHASHI  

     
    PAPER-Image Processing, Computer Graphics and Pattern Recognition

      Vol:
    E76-D No:8
      Page(s):
    905-911

    An algorithm interpolating parallel cross-sections between CT slices is described. Contours of equiscalar or constant-density surfaces on cross-sections are directly obtained as non-intersecting loops from grayscale slice images. This algorithm is based on a general algorithm that the authors have proposed earlier, constructing triangulated orientable closed surfaces from grayscale volumes and is particularly suited for a new technique, called laser stereolithography, which creates real 3D plastic objects using UV laser to scan and harden liquid polymer. The process of laser stereolithography is executed slice by slice, and this technique really requires some interpolation of intermediate cross-sections between slices. For visualizing, surfaces are only expected to be shaded almost continuously. The local defects are invisible and not cared about if the picture resolution is rather poor. On the contrary, topological faults are fatal to construct solid models by laser stereolithography, i.e., every contour line on cross-sections must be closed with no intersection. Not a single break of a contour line is tolerated. We already have many algorithms available for equiscalar surface construction, and it seems that if we cut the surfaces, then contour lines could be obtained. However, few of them are directly applicable to solid modeling. Marching cubes algorithm, for example, does not ensure the consistency of surface topology. Our algorithm guarantee an adequate topology of contour lines.

  • Performance Evaluation of Super High Definition Lmage Processing on a Parallel DSP System

    Tomoko SAWABE  Tatsuya FUJII  Tetsurou FUJII  Sadayasu ONO  

     
    PAPER-Image Processing

      Vol:
    E76-A No:8
      Page(s):
    1308-1315

    In this paper, we evaluate the sustained performance of the prototype SHD (Super High Definition) image processing system NOVI- HiPIPE, and discuss the requirements of a real-time SHD image processing system. NOVI- HiPIPE is a parallel DSP system with 128 PEs (Processing Elements), each containing one vector processor, and its peak performance is 15 GFLOPS. The measured performance of this system is at least 100 times higher than that of the Cray-2 (single CPU), but is still insufficient for real-time SHD image coding. When coding SHD moving images at 60 frames per second with the JPEG algorithm, the performance must be at least ten times faster than is now possible with NOVI- HiPIPE. To extract higher performance from a parallel processing system, the system architecture must be suitable for the implemented process. The advantages of NOVI- HiPIPE are its mesh network and high performance pipelined vector processor (VP), one of which is installed on each PE. When most basic SHD image coding techniques are implemented on NOVI- HiPIPE, intercommunication occurs only between directly connected PEs, and its cost is very low. Each VP can efficiently execute vector calculations. which occur frequently in image processing, and they increase the performance of NOVI- HiPIPE by a factor of from 20 to 100. In order to further improve the performance, the speed of memory access and bit operation must be increased. The next generation SHD image processing system must be built around the VP, an independent function block which controls memory access, and another block which executes bit operations. To support the input and output of SHD moving images and the inter-frame coding algorithms, the mesh network should be expanded into a 3D-cube.

  • Direct Sequence Spread Spectrum over Measured Indoor Radio Channels

    Mitchell CHASE  Kaveh PAHLAVAN  

     
    INVITED PAPER

      Vol:
    E76-B No:8
      Page(s):
    835-841

    Indoor radio communications is an important component of the emerging personal communication systems service. It is also the basis for wireless local area networks. The indoor radio channel is characterized by fading multipaths as well as noise. Direct sequence spread spectrum (DSSS), with its inherent resistance to multipath interference is an attractive technique for this environment. To allow multiple users within the limited bandwidths available, code division multiple access is needed. This paper analyzes the performance of a DSSS scheme employing random orthogonal codes over fading multipath indoor radio channels using actual channel measurements from five different locations. A RAKE receiver is used to study the effects of power control, code length and receiver structure. The average probability of error as a function of signal-to-noise ratio or as a function of the number of simultaneous transmitters is used as the performance criteria.

  • Dependence of CMOS/SIMOX Inverter Delay Time on Gate Overlap Capacitance

    Takakuni DOUSEKI  Kazuo AOYAMA  Yasuhisa OMURA  

     
    PAPER-Electronic Circuits

      Vol:
    E76-C No:8
      Page(s):
    1325-1332

    This paper describes the dependence of the delay time of a CMOS/SIMOX inverter on the gate-overlap capacitance. An analytical delay-time equation for the CMOS/SIMOX inverter, which includes the gate-overlap capacitance, is derived. This equation shows that the feed-forward effect dominates the characteristics of inverters with a small fanout. The validity of the delay-time equation is confirmed by the comparison to experimental measurements of 0.4-µm CMOS/SIMOX devices. Moreover, a sensitivity analysis shows that it is very important to reduce the gate-drain overlap capacitance for fabricating high-speed scaled-down CMOS/SIMOX devices.

  • Field Tests of a Spread Spectrum Land Mobile Satellite Communication System

    Tetsushi IKEGAMI  Shinichi TAIRA  Yoshiya ARAKAKI  

     
    PAPER

      Vol:
    E76-B No:8
      Page(s):
    996-1001

    The bit error performance of a Direct Sequence Spread Spectrum Communication system in actual land mobile satellite channel is evaluated with experiments. Field test results with the ETS-V satellite in urban and suburban environments at L-band frequency show that this land mobile satellite channel of 3MHz bandwidth can be seen as a non-frequency selective Rician fading channel as well as shadowing channel. The bit error performance can be estimated from signal power measurement as in the case of narrow band modulation signals.

  • Meaning of Maximum and Mean-Square Cross-Correlation as a Performance Measure for CDMA Code Families and Their Influence on System Capacity

    Kari H. A. KÄRKKÄINEN  

     
    PAPER

      Vol:
    E76-B No:8
      Page(s):
    848-854

    It is concluded from numerical examples for the well-known linear PN sequence families of a large range of periods that the mean-square cross-correlation value between sequences is the dominating parameter to the average signal-to-noise power ratio performance of an asynchronous direct-sequence (DS) code-division multiple-access (CDMA) system. The performance parameters derived by Pursley and Sarwate are used for numerical evaluation and the validity of conclusion is supported by reviewing the other related works. The mean-square periodic cross-correlation takes the equal value p (code period) for the known CDMA code families. The equal mean-square cross-correlation performance results from the basic results of coding theory.

  • Possibility of Phonon-Assistance on Electronic Transport and the Cooper Pairing in Oxide Superconductors

    Ryozo AOKI  Hironaru MURAKAMI  Tetsuro NAKAMURA  

     
    PAPER

      Vol:
    E76-C No:8
      Page(s):
    1310-1318

    The Cooper pairing interaction in high Tc oxide superconductor is discussed in terms of an empirical expression; TcDexp[1/g], gcωo which was derived in our previous investigation. The dual character of this expression consisting of the phonon Debye temperature D and electronic excitation ωo in the mid-infrared region can be interpreted on the basis of the phonon-assisted mechanism on carrier conduction and the electronic excitation. A tunneling spectrum here presented shows certain evidence of the phonon contribution. The characteristics of the long range superconductive proximity phenomena recently reported are also may be interpreted by this mechanism.

  • A Delay Lock Loop for Mobile Communications in the Presence of Multipath Fading

    Makoto TAKEUCHI  Akihiro KAJIWARA  Masao NAKAGAWA  

     
    PAPER

      Vol:
    E76-B No:8
      Page(s):
    1039-1046

    In this paper we present a new tracking scheme using two tracking modes which are based on the concept of Delay Lock Loop (DLL). Under the multipath fading channels, a conventional DLL has problems of jitter performance degradation, lock-off and delay offset. It is necessary to solve these problems, because mobile communications have increased drastically. We propose the combination of a coarse tracking mode and a fine tracking mode. The former mode is employed for reducing the possibility of losing lock, the latter mode is used for suppressing the jitter of delay error and the delay offset in the presence of multipath fading. The both modes utilize the power of delay paths shown in the auto-correlation function of the received signal at the DLL. Computer simulation results show that our proposed scheme is extremely useful comparing with a conventional scheme over the multipath fading channels.

  • Parallel VLSI Architecture for Multi-Layer Self-Organizing Cellular Network

    Yoshikazu MIYANAGA  Koji TOCHINAI  

     
    PAPER-Neural Networks and Chips

      Vol:
    E76-C No:7
      Page(s):
    1174-1181

    This paper proposes a multi-layer cellular network in which a self-organizing method is implemented. The network is developed for the purpose of data clustering and recognition. A multi-layer structure is presented to realize the sophisticated combination of several sub-spaces which are spanned by given input characteristic data. A self-organizing method is useful for evaluating the set of clusters for input data without a supervisor. Thus, using these techniques this network can provide good clustering ability as an example for image/pattern data which have complicated and structured characteristics. In addition to the development of this algorithm, this paper also presents a parallel VLSI architecture for realizing the mechanism with high efficiency. Since the locality can be kept among all processing elements on every layer, the system is easily designed without large global data communication.

  • Evaluations for Estimation of an Information Source Based on State Decomposition

    Joe SUZUKI  

     
    PAPER-Information Theory and Coding Theory

      Vol:
    E76-A No:7
      Page(s):
    1240-1251

    This paper's main objective is to analyze several procedures which select the model g among a set G of stochastic models to minimize the value of an information criterion in the form of L(g)H[g](zn)+(k(g)/2)c(n), where zn is the n observed data emitted by an information source θ which consists of the model gθ∈G and k(gθ) mutually independent stochastic parameters in the model gθ∈G, H[g](zn) is (-1) (the maximum log likelihood value of the data zn with respect to a model g∈G), and c(n) is a predetermined function (penalty function) of n which controls the amount of penalty for increasing the model size. The result is focused on specific performances when the information criteria are applied to the framework of so-called state decomposition. Especially, upper bounds are derived of the following two performance measures for each penalty function c(n): the error probability of the model selection, and the average Kullback-Leibler information between the true information source and the estimated information source.

  • A Copy-Learning Model for Recognizing Patterns Rotated at Various Angles

    Kenichi SUZAKI  Shinji ARAYA  Ryozo NAKAMURA  

     
    LETTER

      Vol:
    E76-A No:7
      Page(s):
    1207-1211

    In this paper we discuss a neural network model that can recognize patterns rotated at various angles. The model employs copy learning, a learning method entirely different from those used in conventional models. Copy-Learning is an effective learning method to attain the desired objective in a short period of time by making a copy of the result of basic learning through the application of certain rules. Our model using this method is capable of recognizing patterns rotated at various angles without requiring mathematical preprocessing. It involves two processes: first, it learns only the standard patterns by using part of the network. Then, it copies the result of the learning to the unused part of the network and thereby recognizes unknown input patterns by using all parts of the network. The model has merits over the conventional models in that it substantially reduces the time required for learning and recognition and can also recognize the rotation angle of the input pattern.

  • Design of Wave-Parallel Computing Architectures and Its Application to Massively Parallel Image Processing

    Yasushi YUMINAKA  Takafumi AOKI  Tatsuo HIGUCHI  

     
    PAPER-Multiple-Valued Architectures and Systems

      Vol:
    E76-C No:7
      Page(s):
    1133-1143

    This paper proposes new architecture LSIs based on wave-parallel computing to provide an essential solution to the interconnection problems in massively parallel processing. The basic concept is ferquency multiplexing of digital information, which enables us to utilize the parallelism of electrical (or optical) waves for parallel processing. This wave-parallel computing concept is capable of performing several independent binary funtions in parallel with a single module. In this paper, we discuss the design of wave-parallel image processing LSI to demonstrate the feasibility of reducing the number of interconnections among modules.

  • Multiple-Valued Code Assignment Algorithm for VLSI-Oriented Highly Parallel k-Ary Operation Circuits

    Saneaki TAMAKI  Michitaka KAMEYAMA  

     
    PAPER-Multiple-Valued Architectures and Systems

      Vol:
    E76-C No:7
      Page(s):
    1112-1118

    Design of high-speed digital circuits such as adders and multipliers is one of the most important issues to implement high performance VLSI systems. This paper proposes a new multiple-valued code assignment algorithm to implement locally computable combinational circuits for k-ary operations. By the decomposition of a given k-ary operation into unary operations, a code assignment algorithm for k-ary operations is developed. Partition theory usually used in the design of sequential circuits is effectively employed for optimal code assignment. Some examples are shown to demonstrate the usefulness of the proposed algorithm.

  • Detection of Radar Target by Means of Texture Analysis

    Norihisa HIRAO  Matsuo SEKINE  

     
    PAPER-Electronic and Radio Applications

      Vol:
    E76-B No:7
      Page(s):
    789-792

    We observed a ship as a radar target embedded in sea clutter using a millimeter wave radar. The shape of the ship and sea clutter were discriminated by using texture analysis in image processing. As a discriminator, a nonlinear transformation of a local pattern was defined to deal with high order statistics.

  • Three Dimensional Optical Interconnection Technology for Massively-Parallel Computing Systems

    Kazuo KYUMA  Shuichi TAI  

     
    INVITED PAPER

      Vol:
    E76-C No:7
      Page(s):
    1070-1079

    Three dimensional (3-D) optics offers potential advantages to the massively-parallel systems over electronics from the view point of information transfer. The purpose of this paper is to survey some aspects of the 3-D optical interconnection technology for the future massively-parallel computing systems. At first, the state-of-art of the current optoelectronic array devices to build the interconnection networks are described, with emphasis on those based on the semiconductor technology. Next, the principles, basic architectures, several examples of the 3-D optical interconnection systems in neural networks and multiprocessor systems are described. Finally, the issues that are needed to be solved for putting such technology into practical use are summarized.

  • Improvement of the Isolation Characteristics of a Two-Layer Self-Diplexing Array Antenna Using a Circularly Polarized Ring Patch Antenna

    Wataru CHUJO  Masayuki FUJISE  Hiroyuki ARAI  Naohisa GOTO  

     
    LETTER

      Vol:
    E76-B No:7
      Page(s):
    755-758

    In a two-layer self-diplexing antenna fed at two ports, theoretical analysis has already shown that the isolation characteristics can be improved by adjusting the angle between the feed locations of the transmitting and receiving antennas. In this letter, we experimentally investigate the isolation characteristics of the self-diplexing array antenna. First, calculated and experimental results for each feed location of the element antenna are compared and good agreement is found. Second, experimental results with a 19-element planar array indicate that a self-diplexing antenna with suitably chosen feed configuration is effective in improving the isolation in a phased array antenna.

  • A Concurrent Fault Detection Method for Instruction Level Parallel Processors

    Alberto PALACIOS PAWLOVSKY  Makoto HANAWA  

     
    PAPER

      Vol:
    E76-D No:7
      Page(s):
    755-762

    This paper describes a new method for the concurrent detection of faults in instruction level parallel (ILP) processors. This method uses the No OPeration (NOP) instruction slots that under branches, resource conflicts and some kind of data dependencies fill some of the pipelines (stages) in an ILP processor. NOPs are replaced by the copy of an effective instruction running in another pipeline. This allows the checking of the pipelines running the original instruction and its copy (ies), by the comparison of the outputs of their stages during the execution of the replicated instruction. We show some figures obtained for the application of this method to a two-pipeline superscalar processor.

8001-8020hit(8249hit)