The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] POS(1110hit)

41-60hit(1110hit)

  • Low-Complexity Hybrid Precoding Based on PAST for Millimeter Wave Massive MIMO System Open Access

    Rui JIANG  Xiao ZHOU  You Yun XU  Li ZHANG  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2022/04/21
      Vol:
    E105-B No:10
      Page(s):
    1192-1201

    Millimeter wave (mmWave) massive Multiple-Input Multiple-Output (MIMO) systems generally adopt hybrid precoding combining digital and analog precoder as an alternative to full digital precoding to reduce RF chains and energy consumption. In order to balance the relationship between spectral efficiency, energy efficiency and hardware complexity, the hybrid-connected system structure should be adopted, and then the solution process of hybrid precoding can be simplified by decomposing the total achievable rate into several sub-rates. However, the singular value decomposition (SVD) incurs high complexity in calculating the optimal unconstrained hybrid precoder for each sub-rate. Therefore, this paper proposes PAST, a low complexity hybrid precoding algorithm based on projection approximate subspace tracking. The optimal unconstrained hybrid precoder of each sub-rate is estimated with the PAST algorithm, which avoids the high complexity process of calculating the left and right singular vectors and singular value matrix by SVD. Simulations demonstrate that PAST matches the spectral efficiency of SVD-based hybrid precoding in full-connected (FC), hybrid-connected (HC) and sub-connected (SC) system structure. Moreover, the superiority of PAST over SVD-based hybrid precoding in terms of complexity and increases with the number of transmitting antennas.

  • Class-E Power Amplifier with Improved PAE Bandwidth Using Double CRLH TL Stub for Harmonic Tuning Open Access

    Shinichi TANAKA  Hirotaka ASAMI  Takahiro SUZUKI  

     
    INVITED PAPER

      Pubricized:
    2022/04/11
      Vol:
    E105-C No:10
      Page(s):
    441-448

    This paper presents a class-E power amplifier (PA) with a novel harmonic tuning circuit (HTC) based on composite right-/left-handed transmission lines (CRLH TLs). One of the issues of conventional harmonically tuned PAs is the limited PAE bandwidth. It is shown by simulation that class-E amplifiers have potential of maintaining high PAE over a wider frequency range than for example class-F amplifiers. To make full use of class-E amplifiers with the superior characteristics, an HTC using double CRLH TL stub structure is proposed. The HTC is not only compact but also enhances the inherently wide operation frequency range of class-E amplifier. A 2-GHz 6W GaN-HEMT class-E PA using the proposed HTC demonstrated a PAE bandwidth (≥65%) of 380MHz with maximum drain efficiency and PAE of 78.5% and 74.0%, respectively.

  • Low-Temperature Deposition of Yttrium Oxide on Flexible PET Films Using Time-Separated Yttrium Precursor and Oxidizer Injections

    Kentaro SAITO  Kazuki YOSHIDA  Masanori MIURA  Kensaku KANOMATA  Bashir AHMMAD  Shigeru KUBOTA  Fumihiko HIROSE  

     
    PAPER

      Pubricized:
    2022/06/27
      Vol:
    E105-C No:10
      Page(s):
    604-609

    Low-temperature deposition of Y2O3 at 80°C is studied using an yttrium precursor of tris(butylcyclopentadienyl)yttrium (Y(BuCp)3) and plasma exited humidified argon oxidizer. The deposition is demonstrated using an atomic-layer-deposition sequence; the Y(BuCp)3 and the oxidizing gases are time separately introduced to the reaction chamber and these injections are repeated. To determine the gas introduction conditions, surface reactions of Y(BuCp)3 adsorption and its oxidization are observed by an in-situ IR absorption spectroscopy. The deposited film is confirmed as fully oxidized Y2O3 by X-ray photoelectron spectroscopy. The present deposition is applicable for the deposition of Y2O3 film on flexible polyethylene terephthalate films.

  • Low-Temperature Atomic Layer Deposition of AlN Using Trimethyl Aluminum and Plasma Excited Ar Diluted Ammonia

    Kentaro SAITO  Kazuki YOSHIDA  Masanori MIURA  Kensaku KANOMATA  Bashir AHMMAD  Shigeru KUBOTA  Fumihiko HIROSE  

     
    PAPER

      Pubricized:
    2022/06/27
      Vol:
    E105-C No:10
      Page(s):
    596-603

    The low temperature deposition of AlN at 160 °C is examined by using trimethyl aluminum (TMA) and NH radicals from plasma excited Ar diluted ammonia. For the deposition, a plasma tube separated from the reaction chamber is used to introduce the neutral NH radicals on the growing surface without the direct impacts of high-speed species and UV photons, which might be effective in suppressing the plasma damage to the sample surfaces. To maximize the NH radical generation, the NH3 and Ar mixing ratio is optimized by plasma optical emission spectroscopy. To determine the saturated condition of TMA and NH radical irradiations, an in-situ surface observation of IR absorption spectroscopy (IRAS) with a multiple internal reflection geometry is utilized. The low temperature AlN deposition is performed with the TMA and NH radical exposures whose conditions are determined by the IRAS experiment. The spectroscopic ellipsometry indicates the all-round surface deposition in which the growth per cycles measured from front and backside surfaces of the Si sample are of the same range from 0.39∼0.41nm/cycle. It is confirmed that the deposited film contains impurities of C, O, N although we discuss the method to decrease them. X-ray diffraction suggests the AlN polycrystal deposition with crystal phases of AlN (100), (002) and (101). From the saturation curves of TMA adsorption and its nitridation, their chemical reactions are discussed in this paper. In the present paper, we discuss the possibility of the low temperature AlN deposition.

  • Strengthening Network-Based Moving Target Defense with Disposable Identifiers

    Taekeun PARK  Keewon KIM  

     
    LETTER-Information Network

      Pubricized:
    2022/07/08
      Vol:
    E105-D No:10
      Page(s):
    1799-1802

    In this paper, we propose a scheme to strengthen network-based moving target defense with disposable identifiers. The main idea is to change disposable identifiers for each packet to maximize unpredictability with large hopping space and substantially high hopping frequency. It allows network-based moving target defense to defeat active scanning, passive scanning, and passive host profiling attacks. Experimental results show that the proposed scheme changes disposable identifiers for each packet while requiring low overhead.

  • Single Suction Grasp Detection for Symmetric Objects Using Shallow Networks Trained with Synthetic Data

    Suraj Prakash PATTAR  Tsubasa HIRAKAWA  Takayoshi YAMASHITA  Tetsuya SAWANOBORI  Hironobu FUJIYOSHI  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2022/06/21
      Vol:
    E105-D No:9
      Page(s):
    1600-1609

    Predicting the grasping point accurately and quickly is crucial for successful robotic manipulation. However, to commercially deploy a robot, such as a dishwasher robot in a commercial kitchen, we also need to consider the constraints of limited usable resources. We present a deep learning method to predict the grasp position when using a single suction gripper for picking up objects. The proposed method is based on a shallow network to enable lower training costs and efficient inference on limited resources. Costs are further reduced by collecting data in a custom-built synthetic environment. For evaluating the proposed method, we developed a system that models a commercial kitchen for a dishwasher robot to manipulate symmetric objects. We tested our method against a model-fitting method and an algorithm-based method in our developed commercial kitchen environment and found that a shallow network trained with only the synthetic data achieves high accuracy. We also demonstrate the practicality of using a shallow network in sequence with an object detector for ease of training, prediction speed, low computation cost, and easier debugging.

  • Position Estimation for the Capsule Endoscope Using High-Definition Numerical Human Body Model and Measurement Open Access

    Akihiro YOSHITAKE  Masaharu TAKAHASHI  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2022/01/11
      Vol:
    E105-B No:7
      Page(s):
    848-855

    Currently, wireless power transmission technology is being developed for capsule endoscopes. By removing the battery, the capsule endoscope is miniaturized, the number of images that can be taken increases, and the risk of harmful substances leaking from the battery when it is damaged inside the body is avoided. Furthermore, diagnostic accuracy is improved by adjusting the directivity of radio waves according to the position of the capsule endoscope to improve efficiency and adjusting the number of images to be taken according to position by real-time position estimation. In this study, we report the result of position estimation in a high-definition numerical human body model and in an experiment on an electromagnetic phantom.

  • Vulnerability — Information Leakage of Reused Secret Key in NewHope

    Routo TERADA  Reynaldo CACERES VILLENA  

     
    PAPER-Cryptography and Information Security

      Pubricized:
    2021/12/06
      Vol:
    E105-A No:6
      Page(s):
    952-964

    The NIST post-quantum project intends to standardize cryptographic systems that are secure against attacks by both quantum and classical computers. One of these cryptographic systems is NewHope that is a RING-LWE based key exchange scheme. The NewHope Key Encapsulation Method (KEM) allows to establish an encapsulated (secret) key shared by two participants. This scheme defines a private key that is used to encipher a random shared secret and the private key enables the deciphering. This paper presents Fault Information Leakage attacks, using conventional personal computers, if the attacked participant, say Bob, reuses his public key. This assumption is not so strong since reusing the pair (secret, public) keys saves Bob's device computing cost when the public global parameter is not changed. With our result we can conclude that, to prevent leakage, Bob should not reuse his NewHope secret and public keys because Bob's secret key can be retrieved with only 2 communications. We also found that Bob's secret keys can be retrieved for NewHopeToy2, NewHopeToy1 and NewHopeLudicrous with 1, 2, and 3 communications, respectively.

  • A Low-Cost High-Performance Semantic and Physical Distance Calculation Method Based on ZIP Code

    Da LI  Yuanyuan WANG  Rikuya YAMAMOTO  Yukiko KAWAI  Kazutoshi SUMIYA  

     
    PAPER

      Pubricized:
    2022/01/13
      Vol:
    E105-D No:5
      Page(s):
    920-927

    Recently, machine learning approaches and user movement history analysis on mobile devices have attracted much attention. Generally, we need to apply text data into the word embedding tool for acquiring word vectors as the preprocessing of machine learning approaches. However, it is difficult for mobile devices to afford the huge cost of high-dimensional vector calculation. Thus, a low-cost user behavior and user movement history analysis approach should be considered. To address this issue, firstly, we convert the zip code and street house number into vectors instead of textual address information to reduce the cost of spatial vector calculation. Secondly, we propose a low-cost high-performance semantic and physical distance (real distance) calculation method that applied zip-code-based vectors. Finally, to verify the validity of our proposed method, we utilize the US zip code data to calculate both semantic and physical distances and compare their results with the previous method. The experimental results showed that our proposed method could significantly improve the performance of distance calculation and effectively control the cost to a low level.

  • Performance Analysis on the Uplink of Massive MIMO Systems with Superimposed Pilots and Arbitrary-Bit ADCs

    Chen CHEN  Wence ZHANG  Xu BAO  Jing XIA  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2021/10/28
      Vol:
    E105-B No:5
      Page(s):
    629-637

    This paper studies the performance of quantized massive multiple-input multiple-output (MIMO) systems with superimposed pilots (SP), using linear minimum mean-square-error (LMMSE) channel estimation and maximum ratio combining (MRC) detection. In contrast to previous works, arbitrary-bit analog-to-digital converters (ADCs) are considered. We derive an accurate approximation of the uplink achievable rate considering the removal of estimated pilots. Based on the analytical expression, the optimal pilot power factor that maximizes the achievable rate is deduced and an expression for energy efficiency (EE) is given. In addition, the achievable rate and the optimal power allocation policy under some asymptotic limits are analyzed. Analysis shows that the systems with higher-resolution ADCs or larger number of base station (BS) antennas need to allocate more power to pilots. In contrast, more power needs to be allocated to data when the channel is slowly varying. Numerical results show that in the low signal-to-noise ratio (SNR) region, for 1-bit quantizers, SP outperforms time-multiplexed pilots (TP) in most cases, while for systems with higher-resolution ADCs, the SP scheme is suitable for the scenarios with comparatively small number of BS antennas and relatively long channel coherence time.

  • Study on Cloud-Based GNSS Positioning Architecture with Satellite Selection Algorithm and Report of Field Experiments

    Seiji YOSHIDA  

     
    PAPER-Satellite Navigation

      Pubricized:
    2021/10/13
      Vol:
    E105-B No:4
      Page(s):
    388-398

    Cloud-based Global Navigation Satellite Systems (CB-GNSS) positioning architecture that offloads part of GNSS positioning computation to cloud/edge infrastructure has been studied as an architecture that adds valued functions via the network. The merits of CB-GNSS positioning are that it can take advantage of the abundant computing resources on the cloud/edge to add unique functions to the positioning calculation and reduce the cost of GNSS receiver terminals. An issue in GNSS positioning is the degradation in positioning accuracy in unideal reception environments where open space is limited and some satellite signals are blocked. To resolve this issue, we propose a satellite selection algorithm that effectively removes the multipath components of blocked satellite signals, which are the main cause of drop in positioning accuracy. We build a Proof of Concept (PoC) test environment of CB-GNSS positioning architecture implementing the proposed satellite selection algorithm and conduct experiments to verify its positioning performance in unideal static and dynamic conditions. For static long-term positioning in a multipath signal reception environment, we found that CB-GNSS positioning with the proposed algorithm enables a low-end GNSS receiver terminal to match the positioning performance comparable to high-end GNSS receiver terminals in terms of the FIX rate. In an autonomous tractor driving experiment on a farm road crossing a windbreak, we succeeded in controlling the tractor's autonomous movement by maintaining highly precise positioning even in the windbreak. These results indicates that the proposed satellite selection algorithm achieves high positioning performance even in poor satellite signal reception environments.

  • Enabling a MAC Protocol with Self-Localization Function to Solve Hidden and Exposed Terminal Problems in Wireless Ad Hoc Networks

    Chongchong GU  Haoyang XU  Nan YAO  Shengming JIANG  Zhichao ZHENG  Ruoyu FENG  Yanli XU  

     
    PAPER-Mobile Information Network and Personal Communications

      Pubricized:
    2021/10/19
      Vol:
    E105-A No:4
      Page(s):
    613-621

    In a wireless ad hoc network (MANET), nodes can form a centerless, self-organizing, multi-hop dynamic network without any centralized control function, while hidden and exposed terminals seriously affect the network performance. Meanwhile, the wireless network node is evolving from single communication function to jointly providing a self precise positioning function, especially in indoor environments where GPS cannot work well. However, the existing medium access control (MAC) protocols only deal with collision control for data transmission without positioning function. In this paper, we propose a MAC protocol based on 802.11 standard to enable a node with self-positioning function, which is further used to solve hidden and exposed terminal problems. The location of a network node is obtained through exchanging of MAC frames jointly using a time of arrival (TOA) algorithm. Then, nodes use the location information to calculate the interference range, and judge whether they can transmit concurrently. Simulation shows that the positioning function of the proposed MAC protocol works well, and the corresponding MAC protocol can achieve higher throughput, lower average end-to-end delay and lower packet loss rate than that without self-localization function.

  • Efficient Computation of Betweenness Centrality by Graph Decompositions and Their Applications to Real-World Networks

    Tatsuya INOHA  Kunihiko SADAKANE  Yushi UNO  Yuma YONEBAYASHI  

     
    PAPER

      Pubricized:
    2021/11/08
      Vol:
    E105-D No:3
      Page(s):
    451-458

    Betweenness centrality is one of the most significant and commonly used centralities, where centrality is a notion of measuring the importance of nodes in networks. In 2001, Brandes proposed an algorithm for computing betweenness centrality efficiently, and it can compute those values for all nodes in O(nm) time for unweighted networks, where n and m denote the number of nodes and links in networks, respectively. However, even Brandes' algorithm is not fast enough for recent large-scale real-world networks, and therefore, much faster algorithms are expected. The objective of this research is to theoretically improve the efficiency of Brandes' algorithm by introducing graph decompositions, and to verify the practical effectiveness of our approaches by implementing them as computer programs and by applying them to various kinds of real-world networks. A series of computational experiments shows that our proposed algorithms run several times faster than the original Brandes' algorithm, which are guaranteed by theoretical analyses.

  • Improving Practical UC-Secure Commitments based on the DDH Assumption

    Eiichiro FUJISAKI  

     
    PAPER

      Pubricized:
    2021/10/05
      Vol:
    E105-A No:3
      Page(s):
    182-194

    At Eurocrypt 2011, Lindell presented practical static and adaptively UC-secure commitment schemes based on the DDH assumption. Later, Blazy et al. (at ACNS 2013) improved the efficiency of the Lindell's commitment schemes. In this paper, we present static and adaptively UC-secure commitment schemes based on the same assumption and further improve the communication and computational complexity, as well as the size of the common reference string.

  • SimpleZSL: Extremely Simple and Fast Zero-Shot Learning with Nearest Neighbor Classifiers

    Masayuki HIROMOTO  Hisanao AKIMA  Teruo ISHIHARA  Takuji YAMAMOTO  

     
    PAPER-Pattern Recognition

      Pubricized:
    2021/10/29
      Vol:
    E105-D No:2
      Page(s):
    396-405

    Zero-shot learning (ZSL) aims to classify images of unseen classes by learning relationship between visual and semantic features. Existing works have been improving recognition accuracy from various approaches, but they employ computationally intensive algorithms that require iterative optimization. In this work, we revisit the primary approach of the pattern recognition, ı.e., nearest neighbor classifiers, to solve the ZSL task by an extremely simple and fast way, called SimpleZSL. Our algorithm consists of the following three simple techniques: (1) just averaging feature vectors to obtain visual prototypes of seen classes, (2) calculating a pseudo-inverse matrix via singular value decomposition to generate visual features of unseen classes, and (3) inferring unseen classes by a nearest neighbor classifier in which cosine similarity is used to measure distance between feature vectors. Through the experiments on common datasets, the proposed method achieves good recognition accuracy with drastically small computational costs. The execution time of the proposed method on a single CPU is more than 100 times faster than those of the GPU implementations of the existing methods with comparable accuracies.

  • Image Adjustment for Multi-Exposure Images Based on Convolutional Neural Networks

    Isana FUNAHASHI  Taichi YOSHIDA  Xi ZHANG  Masahiro IWAHASHI  

     
    PAPER-Image Processing and Video Processing

      Pubricized:
    2021/10/21
      Vol:
    E105-D No:1
      Page(s):
    123-133

    In this paper, we propose an image adjustment method for multi-exposure images based on convolutional neural networks (CNNs). We call image regions without information due to saturation and object moving in multi-exposure images lacking areas in this paper. Lacking areas cause the ghosting artifact in fused images from sets of multi-exposure images by conventional fusion methods, which tackle the artifact. To avoid this problem, the proposed method estimates the information of lacking areas via adaptive inpainting. The proposed CNN consists of three networks, warp and refinement, detection, and inpainting networks. The second and third networks detect lacking areas and estimate their pixel values, respectively. In the experiments, it is observed that a simple fusion method with the proposed method outperforms state-of-the-art fusion methods in the peak signal-to-noise ratio. Moreover, the proposed method is applied for various fusion methods as pre-processing, and results show obviously reducing artifacts.

  • A Robust Canonical Polyadic Tensor Decomposition via Structured Low-Rank Matrix Approximation

    Riku AKEMA  Masao YAMAGISHI  Isao YAMADA  

     
    PAPER-Digital Signal Processing

      Pubricized:
    2021/06/23
      Vol:
    E105-A No:1
      Page(s):
    11-24

    The Canonical Polyadic Decomposition (CPD) is the tensor analog of the Singular Value Decomposition (SVD) for a matrix and has many data science applications including signal processing and machine learning. For the CPD, the Alternating Least Squares (ALS) algorithm has been used extensively. Although the ALS algorithm is simple, it is sensitive to a noise of a data tensor in the applications. In this paper, we propose a novel strategy to realize the noise suppression for the CPD. The proposed strategy is decomposed into two steps: (Step 1) denoising the given tensor and (Step 2) solving the exact CPD of the denoised tensor. Step 1 can be realized by solving a structured low-rank approximation with the Douglas-Rachford splitting algorithm and then Step 2 can be realized by solving the simultaneous diagonalization of a matrix tuple constructed by the denoised tensor with the DODO method. Numerical experiments show that the proposed algorithm works well even in typical cases where the ALS algorithm suffers from the so-called bottleneck/swamp effect.

  • CMOS Image Sensor with Pixel-Parallel ADC and HDR Reconstruction from Intermediate Exposure Images Open Access

    Shinnosuke KURATA  Toshinori OTAKA  Yusuke KAMEDA  Takayuki HAMAMOTO  

     
    LETTER-Image

      Pubricized:
    2021/07/26
      Vol:
    E105-A No:1
      Page(s):
    82-86

    We propose a HDR (high dynamic range) reconstruction method in an image sensor with a pixel-parallel ADC (analog-to-digital converter) for non-destructively reading out the intermediate exposure image. We report the circuit design for such an image sensor and the evaluation of the basic HDR reconstruction method.

  • Monocone Antenna with Short Elements on Wideband Choke Structure Using Composite Right/Left-Handed Coaxial Line

    Kazuya MATSUBAYASHI  Naobumi MICHISHITA  Hisashi MORISHITA  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2021/06/01
      Vol:
    E104-B No:11
      Page(s):
    1408-1418

    The composite right/left-handed (CRLH) coaxial line (CL) with wideband electromagnetic band gap (EBG) is applied to the wideband choke structure for a monocone antenna with short elements, and the resulting characteristics are considered. In the proposed antenna, impedance matching and leakage current suppression can be achieved across a wideband off. The lowest frequency (|S11| ≤ -10dB) of the proposed antenna is about the same as that of the monocone antenna on an infinite ground plane. In addition, the radiation patterns of the proposed antenna are close to the figure of eight in wideband. The proposed antenna is prototyped, and the validity of the simulation is verified through measurement.

  • Influence of Access to Reading Material during Concept Map Recomposition in Reading Comprehension and Retention

    Pedro GABRIEL FONTELES FURTADO  Tsukasa HIRASHIMA  Nawras KHUDHUR  Aryo PINANDITO  Yusuke HAYASHI  

     
    PAPER-Educational Technology

      Pubricized:
    2021/08/02
      Vol:
    E104-D No:11
      Page(s):
    1941-1950

    This study investigated the influence of reading time while building a closed concept map on reading comprehension and retention. It also investigated the effect of having access to the text during closed concept map creation on reading comprehension and retention. Participants from Amazon Mechanical Turk (N =101) read a text, took an after-text test, and took part in one of three conditions, “Map & Text”, “Map only”, and “Double Text”, took an after-activity test, followed by a two-week retention period and then one final delayed test. Analysis revealed that higher reading times were associated with better reading comprehension and better retention. Furthermore, when comparing “Map & Text” to the “Map only” condition, short-term reading comprehension was improved, but long-term retention was not improved. This suggests that having access to the text while building closed concept maps can improve reading comprehension, but long term learning can only be improved if students invest time accessing both the map and the text.

41-60hit(1110hit)