The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] ROM(701hit)

221-240hit(701hit)

  • Linear Time Calculation of On-Chip Power Distribution Network Capacitance Considering State-Dependence

    Shiho HAGIWARA  Koh YAMANAGA  Ryo TAKAHASHI  Kazuya MASU  Takashi SATO  

     
    PAPER-Device and Circuit Modeling and Analysis

      Vol:
    E93-A No:12
      Page(s):
    2409-2416

    A fast calculation tool for state-dependent capacitance of power distribution network is proposed. The proposed method achieves linear time-complexity, which can be more than four orders magnitude faster than a conventional SPICE-based capacitance calculation. Large circuits that have been unanalyzable with the conventional method become analyzable for more comprehensive exploration of capacitance variation. The capacitance obtained with the proposed method agrees SPICE-based method completely (up to 5 digits), and time-linearity is confirmed through numerical experiments on various circuits. The maximum and minimum capacitances are also calculated using average and variance estimation. Calculation times are linear time-complexity, too. The proposed tool facilitates to build an accurate macro model of an LSI.

  • Security Analysis of Two Augmented Password-Authenticated Key Exchange Protocols

    SeongHan SHIN  Kazukuni KOBARA  Hideki IMAI  

     
    LETTER-Cryptography and Information Security

      Vol:
    E93-A No:11
      Page(s):
    2092-2095

    An augmented PAKE (Password-Authenticated Key Exchange) protocol is said to be secure against server-compromise impersonation attacks if an attacker who obtained password verification data from a server cannot impersonate a client without performing off-line dictionary attacks on the password verification data. There are two augmented PAKE protocols where the first one [12] was proposed in the IEEE Communications Letters and the second one [15] was submitted to the IEEE P1363.2 standard working group [9]. In this paper, we show that these two augmented PAKE protocols [12], [15] (claimed to be secure) are actually insecure against server-compromise impersonation attacks. More specifically, we present generic server-compromise impersonation attacks on these augmented PAKE protocols [12],[15].

  • Novel Electrochromic Polymer for Electronic Paper Open Access

    Yoshiro KONDO  Hirofumi TANABE  Tomiaki OTAKE  

     
    INVITED PAPER

      Vol:
    E93-C No:11
      Page(s):
    1602-1606

    Electrochromic (EC) type e-paper is attracted with colorfulness and clearness. We have been researching and developing the material for EC type e-paper. We developed novel EC Polymers for e-paper. Our EC polymers are kinds of conductive polymers (CP). CP has some characteristics. One is electrochromism, and the other is electrochemical polymerization. Electrochromism of CP has a good memory effect. And electrochemical polymerization is suitable for printable electronics, for instance, ink-jet, screen print, and so on. Our EC polymers are comprised with thiophene derivatives and pi-conjugated X unit. To our knowledge, this thiophene derivatives are novel structure for EC polymers. These EC polymers have the electrochromic characteristic which change from coloration state to clear state. And we can adjust the color which we want by changing only X unit. And we made segment matrix EC display with our EC polymers by ink-jet printing. Our EC polymers are suitable for printable electronics, flexible substrate, and roll-to-roll process. We introduce our developing technologies.

  • A Method of Expanding Operating Frequency Band in a Reverberating TEM Cell by Using a Wire Septum

    Hye-Kwang KIM  Jung-Hoon KIM  Eugene RHEE  Sung-Il YANG  

     
    PAPER-Electromagnetic Compatibility(EMC)

      Vol:
    E93-B No:11
      Page(s):
    3066-3071

    This paper presents a method of expanding the operating frequency band of a Reverberating TEM Cell (RTC) for electromagnetic compatibility (EMC) testing. To expand the operating frequency band of an RTC, this paper places a wire septum inside the cell instead of a solid septum. The maximum usable frequency (MUF) for TEM cell operation and the lowest usable frequency (LUF) for reverberating chamber operation with the wire septum are studied and compared with a conventional solid septum. The E field strengths inside the RTC are measured and evaluated. The measurement results show that the RTC with the wire septum have similar MUF to the RTC with a solid septum at TEM mode, but have much lower LUF at a reverberating mode, which proves that the operating frequency band of the RTC can be expanded by using the wire septum.

  • Flesh Tone Balance Algorithm for AWB of Facial Pictures

    Tae-Wuk BAE  Sung-Hak LEE  Jung-Wook LEE  Kyu-Ik SOHNG  

     
    BRIEF PAPER

      Vol:
    E93-C No:11
      Page(s):
    1616-1620

    This paper proposes a new auto flesh tone balance algorithm for the picture that is taken for people. In this paper, the basis of auto white balance (AWB) is human face in photo. For experiment, the transfer characteristic of camera image sensor is analyzed and the camera output RGB is calculated by measuring the average face chromaticity under standard illuminant. For the face region taken under unknown illuminant, the proposed algorithm makes RGB output rate of face region become its rate of standard face color. For this, it adjusts the R and B channel and performs the chromaticity correction. Algorithm is applied to the light skin color (average face color) in Macbeth color chart and average color of various face colors that are actually measured.

  • Reconstruction of a Dielectric Cylinder with the Use of the T-Matrix and the Singular Value Decomposition

    Kenichi ISHIDA  

     
    PAPER-Electromagnetic Analysis

      Vol:
    E93-B No:10
      Page(s):
    2595-2600

    An algorithm is formulated for reconstructing a dielectric cylinder with the use of the T-matrix and the singular value decomposition (SVD) and is discussed through numerical examples under noisy conditions. The algorithm consists of two stages. At the first stage the measured data of scattered waves is transformed into the T-matrix. At the second stage we reconstruct the cylinder from the T-matrix. The singular value decomposition is applied in order to separate the radiating and the nonradiating currents, and the radiating current is directly obtained from the T-matrix. The nonradiating current and the object are reconstructed by decreasing a residual error of the current in the least square approximation, where linear equations are solved repeatedly. Some techniques are used in order to reduce the calculation time and to reduce the effects of noise. Numerical examples show us that the presented approach is simple and numerically feasible, and enables us to reconstruct a large object in a short time.

  • Improved Measurement Accuracy of a Laser Interferometer: Extended Kalman Filter Approach

    Wooram LEE  Dongkyun KIM  Kwanho YOU  

     
    LETTER-Systems and Control

      Vol:
    E93-A No:10
      Page(s):
    1820-1823

    In this paper a nonlinearity compensation algorithm based on the extended Kalman filter is proposed to improve the measurement accuracy of a heterodyne laser interferometer. The heterodyne laser interferometer is used for ultra-precision measurements such as those used in semiconductor manufacturing. However the periodical nonlinearity property caused by frequency-mixing restricts the accuracy of the nanometric measurements. In order to minimize the effect of the nonlinearity, the measurement process of the laser interferometer is modeled as a state equation and the extended Kalman filtering approach is applied to the process. The effectiveness of our proposed algorithm is demonstrated by comparing the results of the algorithm with experimental results for the laser system.

  • Three-Dimensional Electromagnetic Scattering Analysis Using Constrained Interpolation Profile Method

    Jerdvisanop CHAKAROTHAI  Qiang CHEN  Kunio SAWAYA  

     
    PAPER-Electromagnetic Analysis

      Vol:
    E93-B No:10
      Page(s):
    2619-2628

    A characteristic-based constrained interpolation profile (CIP) method for solving three-dimensional, time-dependent Maxwell's equations is successfully developed. It is utilized to solve one-dimensional wave equations in the formulation of the Maxwell's equations. Calculation procedure of the CIP method for three-dimensional scattering analysis is described in details. Update equations for boundary conditions of a perfectly conducting (PEC) interface and a dielectric interface are formulated and obtained in explicit forms. Numerical analyses of electromagnetic scatterings of PEC sphere, dielectric sphere and PEC cube are performed and the scattering coefficient is calculated and compared with the Mie's analytic results. As a result, the scattering coefficients show good agreement with the Mie's results, which demonstrates the validity of the CIP method and the formulated update equations. It is also shown that the phase of the scattering coefficients determined by the CIP method are slightly more accurate than that of the FDTD method.

  • A Comparative Investigation of Several Frequency Modulation Profiles for Programmed Switching Controllers Targeted Conducted-Noise Reduction in DC-DC Converters

    Gamal M. DOUSOKY  Masahito SHOYAMA  Tamotsu NINOMIYA  

     
    PAPER

      Vol:
    E93-B No:9
      Page(s):
    2265-2272

    This paper investigates the effect of several frequency modulation profiles on conducted-noise reduction in dc-dc converters with programmed switching controller. The converter is operated in variable frequency modulation regime. Twelve switching frequency modulation profiles have been studied. Some of the modulation data are prepared using MATLAB software, and others are generated online. Moreover, all the frequency profiles have been designed and implemented using FPGA and experimentally investigated. The experimental results show that the conducted-noise spreading depends on both the modulation sequence profile and the statistical characteristics of the sequence. A substantial part of the manufacturing cost of power converters for telecommunication applications involves designing filters to comply with the EMI limits. Considering this investigation significantly reduces the filter size.

  • Electromagnetic Interference Analysis Based on Total Harmonic Distortion Measurement in 900 MHz Cordless Telephones

    Jeung geun PARK  Che young KIM  

     
    PAPER-Electromagnetic Compatibility(EMC)

      Vol:
    E93-B No:9
      Page(s):
    2348-2353

    In this paper a new electromagnetic (EM) interference analysis is proposed using the total harmonic distortion (THD) measurement of the audio signal by the 900 MHz cordless telephones. The cordless telephone network in 900 MHz was built up to be weak in EM interference. 400 and 800 Hz of the sine-wave signal were used in transmitter (TX) system, and the receiver (RX) system was exposed to the EM interference. The THD value varies as the level of the exposed EM interference changes. The model of the cordless telephone also affects the THD value. By using fluctuation of the THD value depending on the amount of the exposure, the threshold value of the interference electric field strength was derived. Based on the derived threshold value of the electric field strength, validity of the regulation value for low power radio devices by CISPR 22 [CLASS B] and FCC is discussed.

  • Study of Prominence Detection Based on Various Phone-Specific Features

    Sung Soo KIM  Chang Woo HAN  Nam Soo KIM  

     
    LETTER-Speech and Hearing

      Vol:
    E93-D No:8
      Page(s):
    2327-2330

    In this letter, we present useful features accounting for pronunciation prominence and propose a classification technique for prominence detection. A set of phone-specific features are extracted based on a forced alignment of the test pronunciation provided by a speech recognition system. These features are then applied to the traditional classifiers such as the support vector machine (SVM), artificial neural network (ANN) and adaptive boosting (Adaboost) for detecting the place of prominence.

  • Efficient Modelling Method for Artificial Materials Using Digital Filtering Techniques and EMC Applications

    Hiroki WAKATSUCHI  Stephen GREEDY  John PAUL  Christos CHRISTOPOULOS  

     
    PAPER-PCB and Circuit Design for EMI Control

      Vol:
    E93-B No:7
      Page(s):
    1760-1767

    This paper demonstrates an efficient modelling method for artificial materials using digital filtering (DF) techniques. To demonstrate the efficiency of the DF technique it is applied to an electromagnetic bandgap (EBG) structure and a capacitively-loaded loop the so-called, CLL-based metamaterial. Firstly, this paper describes fine mesh simulations, in which a very small cell size (0.10.10.1 mm3) is used to model the details of an element of the structures to calculate the scattering parameters. Secondly, the scattering parameters are approximated with Padé forms and then factorised. Finally the factorised Padé forms are converted from the frequency domain to the time domain. As a result, the initial features in the fine meshes are effectively embedded into a numerical simulation with the DF boundary, in which the use of a coarse mesh is feasible (1,000 times larger in the EBG structure simulation and 680 times larger in the metamaterial simulation in terms of the volumes). By employing the coarse mesh and removal of the dielectric material calculations, the heavy computational burden required for the fine mesh simulations is mitigated and a fast, efficient and accurate modelling method for the artificial materials is achieved. In the case of the EBG structure the calculation time is reduced from 3 hours to less than 1 minute. In addition, this paper describes an antenna simulation as a specific application example of the DF techniques in electromagnetic compatibility field. In this simulation, an electric field radiated from a dipole antenna is enhanced by the DF boundary which models an artificial magnetic conductor derived from the CLL-based metamaterial. As is shown in the antenna simulation, the DF techniques model efficiently and accurately large-scale configurations.

  • Electric Field Distribution Excited by Indoor Radio Source for Exposure Compliance Assessment

    Junji HIGASHIYAMA  Yoshiaki TARUSAWA  

     
    PAPER-Biological Effects and Safety

      Vol:
    E93-B No:7
      Page(s):
    1834-1838

    Correction factors are presented for estimating the RF electromagnetic field strength in the compliance assessment of human exposure from an indoor RF radio source in the frequency range from 800 MHz to 3.5 GHz. The correction factors are derived from the increase in the spatial average electric field strength distribution, which is dependent on the building materials. The spatial average electric field strength is calculated using relative complex dielectric constants of building materials. The relative complex dielectric constant is obtained through measurement of the transmission and reflection losses for eleven kinds of building materials used in business office buildings and single family dwellings.

  • Analysis of Microstrip Line with Bends Using Fourier Transform and Mode-Matching Technique

    Hyun Ho PARK  

     
    PAPER-PCB and Circuit Design for EMI Control

      Vol:
    E93-B No:7
      Page(s):
    1731-1738

    In this paper, the transmission and reflection properties of the microstrip line with bends are investigated using the Fourier transform and a mode-matching technique. Based on the waveguide model, the microstrip bends are modeled as the rectangular waveguides with perfect electric conducting top and bottom walls and perfect magnetic conducting side walls. Analytical closed-form expressions for transmission and reflection coefficients are developed using the residue calculus. To verify the proposed method, numerical computations are performed for comparison with 3D full-wave simulations and measurements. A quarter-wavelength transmission line scheme is also proposed to improve the signal integrity of double bend discontinuity.

  • Micromachined RF Devices for Concurrent Integration on Dielectric-Air-Metal Structures

    Tamotsu NISHINO  Masatake HANGAI  Yukihisa YOSHIDA  Sang-Seok LEE  

     
    PAPER

      Vol:
    E93-C No:7
      Page(s):
    1111-1118

    This paper proposes a concept of a concurrent configuration of radio-frequency (RF) micromachined and micro-electro-mechanical-system (MEMS) devices. The devices are fabricated on an originally developed dielectric-air-metal (DAM) structure that suits for fabrication of various devices all together. The DAM structure can propose membrane-supported hollow elements embedded in a silicon wafer by creating cavities in it. Even though the devices have different cavity depths, they are processed by just one planarization. In addition, since the structure is worked only from the front side of the wafer, no flipping process as well as no wafer bonding process is required, and the fact realizes low-cost concurrent integration. As applications of the DAM structures, a hollow grounded co-planar waveguide, lumped element circuitries, and an MEMS switch are demonstrated.

  • Compact and Athermal DQPSK Demodulator with Silica-Based Planar Lightwave Circuit Open Access

    Yusuke NASU  Yohei SAKAMAKI  Kuninori HATTORI  Shin KAMEI  Toshikazu HASHIMOTO  Takashi SAIDA  Hiroshi TAKAHASHI  Yasuyuki INOUE  

     
    PAPER-Optoelectronics

      Vol:
    E93-C No:7
      Page(s):
    1191-1198

    We present a full description of a polarization-independent athermal differential quadrature phase shift keying (DQPSK) demodulator that employs silica-based planar lightwave circuit (PLC) technology. Silica-based PLC DQPSK demodulator has good characteristics including low polarization dependence, mass producibility, etc. However delay line interferometer (DLI) of demodulator had the large temperature dependence of its optical characteristics, so it required large power consumption to stabilize the chip temperature by the thermo-electric cooler (TEC). We previously made a quick report about an athermal DLI to reduce a power consumption by removing the TEC. In this paper, we focus on the details of the design and the fabrication method we used to achieve the athermal characteristics, and we describe the thermal stability of the signal demodulation and the reliability of our demodulator. We described two athermalization methods; the athermalization of the transmission spectrum and the athermalization of the polarization property. These methods were successfully demonstrated with keeping a high extinction ratio and a small footprint by introducing a novel interwoven DLI configuration. This configuration can also limit the degradation of the polarization dependent phase shift (PDf) to less than 1/10 that with the conventional configuration when the phase shifters on the waveguide are driven. We used our demodulator and examined its demodulation performance for a 43 Gbit/s DQPSK signal. We also verified its long-term reliability and thermal stability against the rapid temperature change. As a result, we confirmed that our athermal demodulator performed sufficiently well for use in DQPSK systems.

  • Implementation of HMM-Based Human Activity Recognition Using Single Triaxial Accelerometer

    Chang Woo HAN  Shin Jae KANG  Nam Soo KIM  

     
    LETTER-Digital Signal Processing

      Vol:
    E93-A No:7
      Page(s):
    1379-1383

    In this letter, we propose a novel approach to human activity recognition. We present a class of features that are robust to the tilt of the attached sensor module and a state transition model suitable for HMM-based activity recognition. In addition, postprocessing techniques are applied to stabilize the recognition results. The proposed approach shows significant improvements in recognition experiments over a variety of human activity DB.

  • Electromagnetic Bandgap (EBG) Structures Using Open Stubs to Suppress Power Plane Noise

    Hiroshi TOYAO  Noriaki ANDO  Takashi HARADA  

     
    PAPER-PCB and Circuit Design for EMI Control

      Vol:
    E93-B No:7
      Page(s):
    1754-1759

    A novel approach is proposed for miniaturizing the unit cell size of electromagnetic bandgap (EBG) structures that suppress power plane noise. In this approach, open stubs are introduced into the shunt circuits of these EBG structures. Since the stub length determines the resonant frequencies of the shunt circuit, the proposed structures can maintain the bandgaps at lower frequencies without increasing the unit cell size. The bandgap frequencies were estimated by dispersion analysis based on the Bloch theorem and full-wave simulations. Sample boards of the proposed EBG structures were fabricated with a unit cell size of 2.1 mm. Highly suppressed noise propagation over the estimated frequency range of 1.9-3.6 GHz including the 2.4-GHz wireless-LAN band was experimentally demonstrated.

  • A Simulation-Based Black-Box Microcontroller Model for EME Prediction

    Yamarita VILLAVICENCIO  Francesco MUSOLINO  Franco FIORI  

     
    PAPER-Chip and Package Level EMC

      Vol:
    E93-B No:7
      Page(s):
    1715-1722

    This paper describes a black-box model of mixed analog-digital VLSI circuits for the prediction of microcontroller electromagnetic emissions without disclosure of manufacturer data. The model is based on small-signal simulations performed at the analog and digital building-block level, considering also layout and technology parameters, and modeling the parasitic substrate coupling paths and the interconnects. The developed model allows system designers to predict the impact of microcontroller operation on the system-level EMEs by carrying out low-time consuming simulations in the early design phases of their products thus minimizing unnecessary costs and scheduling delays. In this paper, the black-box model of an 8-bit microcontroller is described and it is employed to predict the conducted emission delivered through the input-output ports.

  • Evaluation of Uncertainties in Electromagnetic Disturbance Measurement above 1 GHz due to Site Imperfections

    Toshihide TOSAKA  Yukio YAMANAKA  

     
    PAPER-EMC Measurement Technique, EMC Test Facilities

      Vol:
    E93-B No:7
      Page(s):
    1690-1696

    The data dispersion of the measurement of electromagnetic disturbance above 1 GHz is mainly affected by site imperfections (expressed by the site voltage standing wave ratio (SVSWR)). To confirm the relationship between site imperfections and the measured field strength, we measured the SVSWR and the field strength radiated from the equipment under test (EUT) by changing the area covered by the RF absorber on the metal ground plane. From the results, we found that the data dispersion of measured field strength can be estimated from the measured SVSWR, and therefore, we can determine the measurement uncertainty of the measured field strength at the test site.

221-240hit(701hit)