The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] ROM(701hit)

241-260hit(701hit)

  • A Freehand Scanning Method for Measuring EMF Distributions Using Magnetic Tracker

    Ken SATO  Naoki MIYATA  Yoshitsugu KAMIMURA  Yoshifumi YAMADA  

     
    LETTER

      Vol:
    E93-B No:7
      Page(s):
    1865-1868

    In this study, a new scanning method for measuring field distributions is proposed. In this method, measurement positions are automatically decided by a magnetic tracker. This method obtains field distributions in real-time, and can display field distribution map successively by interpolating.

  • Verification of Spark-Resistance Formulae for Micro-Gap ESD

    Yoshinori TAKA  Osamu FUJIWARA  

     
    PAPER-ESD and Transients

      Vol:
    E93-B No:7
      Page(s):
    1801-1806

    Micro-gap electrostatic discharge (ESD) events due to a human with charge voltages below 1000 V cause serious malfunctions in high-tech information devices. For clarifying such a mechanism, it is indispensable to grasp the spark process of such micro-gap ESDs. For this purpose, two types of spark-resistance laws proposed by Rompe-Weizel and Toepler have often been used, which were derived from the hypotheses that spark conductivity be proportional to the internal energies and charges injected into a spark channel, respectively. However, their validity has not well been verified. To examine which spark-resistance formula could be applied for micro-gap ESDs, with a 12-GHz digital oscilloscope, we previously measured the discharge currents through the hand-held metal piece from a charged human with respect to charged voltages of 200 V and 2000 V, and thereby derived the conductance of a spark gap to reveal that both of their hypotheses are roughly valid in the initial stage of sparks. In this study, to further verify the above spark hypotheses, we derived the discharge voltages in closed forms across a spark gap based on the above spark-resistance formulae, and investigated which spark-resistance formula could be applied for micro-gap ESDs in comparison of spark gaps estimated from the measured discharge currents. As a result, we found that Rompe-Weizel's formula could well explain spark properties for micro-gap ESDs than Toepler's one regardless of charge voltages and approach speeds.

  • Can the BMS Algorithm Decode Up to Errors? Yes, but with Some Additional Remarks

    Shojiro SAKATA  Masaya FUJISAWA  

     
    LETTER-Coding Theory

      Vol:
    E93-A No:4
      Page(s):
    857-862

    It is a well-known fact that the BMS algorithm with majority voting can decode up to half the Feng-Rao designed distance dFR. Since dFR is not smaller than the Goppa designed distance dG, that algorithm can correct up to errors. On the other hand, it has been considered to be evident that the original BMS algorithm (without voting) can correct up to errors similarly to the basic algorithm by Skorobogatov-Vladut. But, is it true? In this short paper, we show that it is true, although we need a few remarks and some additional procedures for determining the Groebner basis of the error locator ideal exactly. In fact, as the basic algorithm gives a set of polynomials whose zero set contains the error locators as a subset, it cannot always give the exact error locators, unless the syndrome equation is solved to find the error values in addition.

  • Fast Surface Profiling by White-Light Interferometry Using Symmetric Spectral Optical Filter

    Akira HIRABAYASHI  

     
    PAPER-Measurement Technology

      Vol:
    E93-A No:2
      Page(s):
    542-549

    We propose a surface profiling algorithm by white-light interferometry that extends sampling interval to twice of the widest interval among those used in conventional algorithms. The proposed algorithm uses a novel function called an in-phase component of an interferogram to detect the peak of the interferogram, while conventional algorithms used the squared-envelope function or the envelope function. We show that the in-phase component has the same peak as the corresponding interferogram when an optical filter has a symmetric spectral distribution. We further show that the in-phase component can be reconstructed from sampled values of the interferogram using the so-called quadrature sampling technique. Since reconstruction formulas used in the algorithm are very simple, the proposed algorithm requires low computational costs. Simulation results show the effectiveness of the proposed algorithm.

  • Electromagnetic Scattering from Rectangular Cylinders with Various Wedge Cavities and Bumps

    Shinichiro OHNUKI  Ryuichi OHSAWA  Tsuneki YAMASAKI  

     
    BRIEF PAPER

      Vol:
    E93-C No:1
      Page(s):
    77-80

    Radar cross sections of polygonal cylinders are investigated by using a kind of mode matching methods. Applying two types of novel field-decomposition techniques, electromagnetic scattering analysis can be performed very precisely. We will discuss computational accuracy of our proposed method and the proper choice of field-decomposition techniques for a rectangular cylinder with various shapes of wedge cavities and bumps.

  • 10-Mbps Short-Range Baseband Wireless Communications via Quasi-Static Electric Fields

    Ai-ichiro SASAKI  Akinori FURUYA  Mitsuru SHINAGAWA  

     
    PAPER-Terrestrial Radio Communications

      Vol:
    E93-B No:1
      Page(s):
    144-153

    We propose a novel short-range wireless communications technology that uses quasi-static electric fields; it enables data communication between devices separated by up to 10 cm via dielectric media at a speed of 10 Mbps. It is considered to be a secure wireless technology since communication area is restricted to below about 10 cm. To suppress electromagnetic radiation, we adopted a baseband transmission scheme in which the quasi-static electric field is directly modulated by 10 BASE-T data signals. Since the spectra of the data signals are concentrated to below 20 MHz, the amplitude of the electric field rapidly decreases outside the communication area. This contributes to enhancing security of the communications system. In this paper, we explain a basic principle of the short-range wireless communications technology. Since baseband data signals are carried by the quasi-static electric field, the quality of the communication is easily degraded by the existence of the earth ground. To isolate the communications system from the earth ground, we introduce a novel electro-optic sensor to receive the quasi-static electric field. With the electro-optic sensor, stable data communication is possible at 10 Mbps via dielectric materials, such as a wooden table.

  • Frequency-Domain Equalization for Coherent Optical Single-Carrier Transmission Systems

    Koichi ISHIHARA  Takayuki KOBAYASHI  Riichi KUDO  Yasushi TAKATORI  Akihide SANO  Yutaka MIYAMOTO  

     
    PAPER-Fiber-Optic Transmission for Communications

      Vol:
    E92-B No:12
      Page(s):
    3736-3743

    In this paper, we use frequency-domain equalization (FDE) to create coherent optical single-carrier (CO-SC) transmission systems that are very tolerant of chromatic dispersion (CD) and polarization mode dispersion (PMD). The efficient transmission of a 25-Gb/s NRZ-QPSK signal by using the proposed FDE is demonstrated under severe CD and PMD conditions. We also discuss the principle of FDE and some techniques suitable for implementing CO-SC-FDE. The results show that a CO-SC-FDE system is very tolerant of CD and PMD and can achieve high transmission rates over single mode fiber without optical dispersion compensation.

  • SAR Reduction of PIFA with EBG Structures for Mobile Applications

    Sangil KWAK  Dong-Uk SIM  Jong Hwa KWON  Je Hoon YUN  

     
    LETTER-Antennas and Propagation

      Vol:
    E92-B No:11
      Page(s):
    3550-3553

    This paper proposes two types of electromagnetic bandgap (EBG) structures aimed for SAR reduction on a mobile phone antenna. The EBG structures, one which uses vias while the other does not can reduce the surface wave and prevent the undesired radiation from the antenna. Thus, these structures can reduce the electromagnetic fields toward the human head direction and reduction the SAR value. Tests demonstrate the reduction of SAR values and therefore, the human body can be protected from hazard electromagnetic fields by using the proposed EBG structures, regardless of whether vias are used or not.

  • Improvement of Mode Distribution in a Triangular Prism Reverberation Chamber by QRS Diffuser

    Eugene RHEE  Joong-Geun RHEE  

     
    PAPER-Electromagnetic Compatibility(EMC)

      Vol:
    E92-B No:11
      Page(s):
    3478-3483

    This paper presents the field uniformity characteristics in a triangular prism reverberation chamber that can be substituted for an open area test site or an anechoic chamber to measure electromagnetic interference. To improve size problems of a stirrer that is an official unit to generate a uniform field in the reverberation chamber, we suggest a diffuser of Quadratic Residue Sequence method. To validate the substitution of a diffuser for a stirrer, a diffuser is designed for 1-3 GHz, and three types of equilateral triangular prism reverberation chambers are modeled. Afterwards, the field distributions in these three reverberation chambers are both simulated and tested. Using XFDTD 6.2 of finite difference time domain method, field deviations of each structure are simulated and compared to each other. An evaluation of field uniformity is done by cumulative probability distribution which is specified in the IEC 61000-4-21. The result shows that the field uniformity in the chamber is within 6 dB tolerance and also within 3 dB standard deviation, which means a diffuser can satisfy the requirement of international standards.

  • A 300 MHz Embedded Flash Memory with Pipeline Architecture and Offset-Free Sense Amplifiers for Dual-Core Automotive Microcontrollers

    Shinya KAJIYAMA  Masamichi FUJITO  Hideo KASAI  Makoto MIZUNO  Takanori YAMAGUCHI  Yutaka SHINAGAWA  

     
    PAPER

      Vol:
    E92-C No:10
      Page(s):
    1258-1264

    A novel 300 MHz embedded flash memory for dual-core microcontrollers with a shared ROM architecture is proposed. One of its features is a three-stage pipeline read operation, which enables reduced access pitch and therefore reduces performance penalty due to conflict of shared ROM accesses. Another feature is a highly sensitive sense amplifier that achieves efficient pipeline operation with two-cycle latency one-cycle pitch as a result of a shortened sense time of 0.63 ns. The combination of the pipeline architecture and proposed sense amplifiers significantly reduces access-conflict penalties with shared ROM and enhances performance of 32-bit RISC dual-core microcontrollers by 30%.

  • Dependence of Attenuation of Common Mode Radiation from Indoor Power Line Communication System on Structure of Reinforced Concrete Wall

    Ifong WU  Shinobu ISHIGAMI  Kaoru GOTOH  Yasushi MATSUMOTO  

     
    PAPER-Electromagnetic Compatibility(EMC)

      Vol:
    E92-B No:9
      Page(s):
    2931-2938

    The attenuation effect of the walls of a building on the electromagnetic (EM) field generated by an indoor power line communication (PLC) system is numerically investigated using the finite integration (FI) method. In particular, we focus on the frequency range 2-6 MHz, for which the attenuation effect has not yet been sufficiently analyzed. We model a single, finite-sized wall instead of an entire house, to focus on the dependence of the EM field on the wall structure and also reduce the computational resources required. The EM field strength is evaluated at many points on a view plane 10 m from the wall model, and the results are statistically processed to determine the attenuation effect of the wall. We show that the leakage of an EM field at 2-6 MHz is suppressed by about 30 dB by a reinforced concrete wall. We also show that the main contributor to the attenuation effect is the rebar in the wall. We then investigate the relation between the attenuation effect of a single-wall model and that of a house model. The results show that the attenuation effect of a house model is almost the same as that of a 15-m-wall model. We conclude that the use of a single-wall model instead of a house model is effective in determining the attenuation of the EM leakage. This simple structure reduces analytic space, time, and memory in the evaluation of the dependence on the wall structure of the EM leakage from indoor PLC systems.

  • Precise Estimation of Cellular Radio Electromagnetic Field in Elevators and EMI Impact on Implantable Cardiac Pacemakers

    Louis-Ray HARRIS  Takashi HIKAGE  Toshio NOJIMA  

     
    PAPER

      Vol:
    E92-C No:9
      Page(s):
    1182-1187

    The purpose of this paper is to investigate the possible impact of cellular phones' signals on implantable cardiac pacemakers in elevators. This is achieved by carrying out precise numerical simulations based on the Finite-Difference-Time-Domain method to examine the electromagnetic fields in elevator models. In order to examine the realistic and complicated situations where humans are present in the elevator, we apply the realistic homogeneous human phantom and cellular radios operating in the frequency bands 800 MHz, 1.5 GHz and 2 GHz. These computed results of field strength inside the elevator are compared with a certain reference level determined from the experimentally obtained maximum interference distance of implantable cardiac pacemakers. This enables us to carry out a quantitative evaluation of the EMI risk to pacemakers by cellular radio transmission. The results show that for the case when up to 5 mobile radio users are present in the elevator model used, there is no likelihood of pacemaker malfunction for the frequency bands 800 MHz, 1.5 GHz and 2 GHz.

  • Research on Dynamic Characteristics Testing and Analyzing System of Electromagnetic Relay

    Xuerong YE  Huimin LIANG  Jie DENG  Guofu ZHAI  

     
    PAPER-Relacys & Switches

      Vol:
    E92-C No:8
      Page(s):
    1028-1033

    An electromagnetic relay (EMR) is widely used in automatic control field, and its dynamic characteristics play a significant role in EMR researches. According to structural features of the EMR, a dynamic characteristics testing and analyzing system (DCTAS) based on CCD digital image processing technique is designed and implemented. By using the DCTAS, the dynamic characteristics (include displacement, velocity, acceleration and force characteristics) of EMR whose operating time is less than 12 ms and armature travel is less than 10 mm can be investigated. The comparison of testing data obtained by the DCTAS and that of by a high speed camera indicates the validity of the system to EMR dynamic characteristics testing.

  • Electric Measurement of Melting Phenomena for Breaking Relay Contacts

    Noboru WAKATSUKI  Nobuo TAKATSU  Masahiro OIKAWA  

     
    PAPER-Arc Discharge & Contact Phenomena

      Vol:
    E92-C No:8
      Page(s):
    998-1002

    Using the transient current switch circuit in parallel with the energizing switching contacts for timely control of breaking operation, the increase of contact voltage is suppressed at the last stage of the breaking of electric contacts. Breaking contact voltage Vc and current Ic of electromagnetic relays with Ag contacting electrodes were measured with 12.5-50 V and 0.1-20 A for two hinge springs (Spring constants; 2 N/mm and 0.2 N/mm). The current-decreasing process was clearly measured at the melting voltage Um. After Vc=Um, the breaking time of contact current did not depend on mechanical motion controlled by the two hinge springs and energizing power-supply voltage, but depended on the contact current. The residue of melt electrode was observed optically as a white fusion spot, with radius depending on the energizing current.

  • Analytical Model of Melting Phenomena for Breaking Relay Contacts

    Noboru WAKATSUKI  Nobuo TAKATSU  Toshiteru MAEDA  Takayuki KUDO  

     
    PAPER-Arc Discharge & Contact Phenomena

      Vol:
    E92-C No:8
      Page(s):
    1003-1007

    Using the transient current switch circuit in parallel with the energizing contacts, the slow decay of the contact current due to thermal fusion of metal was observed just after the contact voltage exceeded the melting contact voltage Um. At that time, the contact voltage was higher than the boiling contact voltage Ub. These results contradict Holm's θ theory. A new melting model of breaking mechanical contact is proposed. The area surrounding a cluster of contacting a-spots melts, the melt metal diffuses, and the contact spot thermally shrinks. Including the metal phase transition from solid to liquid, the increase of contact resistance is introduced to the electric circuit analysis. The numerical analysis agrees qualitatively with measured V-I characteristics.

  • Study on Optimization of Electromagnetic Relay's Reaction Torque Characteristics Based on Adjusted Parameters

    Guofu ZHAI  Qiya WANG  Wanbin REN  

     
    PAPER-Relacys & Switches

      Vol:
    E92-C No:8
      Page(s):
    1023-1027

    The cooperative characteristics of electromagnetic relay's attraction torque and reaction torque are the key property to ensure its reliability, and it is important to attain better cooperative characteristics by analyzing and optimizing relay's electromagnetic system and mechanical system. From the standpoint of changing reaction torque of mechanical system, in this paper, adjusted parameters (armature's maximum angular displacement αarm_max, initial return spring's force Finiti_return_spring, normally closed (NC) contacts' force FNC_contacts, contacts' gap δgap, and normally opened (NO) contacts' over travel δNO_contacts) were adopted as design variables, and objective function was provided for with the purpose of increasing breaking velocities of both NC contacts and NO contacts. Finally, genetic algorithm (GA) was used to attain optimization of the objective function. Accuracy of calculation for the relay's dynamic characteristics was verified by experiment.

  • Error-Trellis Construction for Convolutional Codes Using Shifted Error/Syndrome-Subsequences

    Masato TAJIMA  Koji OKINO  Takashi MIYAGOSHI  

     
    PAPER-Coding Theory

      Vol:
    E92-A No:8
      Page(s):
    2086-2096

    In this paper, we extend the conventional error-trellis construction for convolutional codes to the case where a given check matrix H(D) has a factor Dl in some column (row). In the first case, there is a possibility that the size of the state space can be reduced using shifted error-subsequences, whereas in the second case, the size of the state space can be reduced using shifted syndrome-subsequences. The construction presented in this paper is based on the adjoint-obvious realization of the corresponding syndrome former HT(D). In the case where all the columns and rows of H(D) are delay free, the proposed construction is reduced to the conventional one of Schalkwijk et al. We also show that the proposed construction can equally realize the state-space reduction shown by Ariel et al. Moreover, we clarify the difference between their construction and that of ours using examples.

  • Integrated Lithium Niobate Mach-Zehnder Interferometers for Advanced Modulation Formats Open Access

    Tetsuya KAWANISHI  Takahide SAKAMOTO  Akito CHIBA  

     
    INVITED PAPER

      Vol:
    E92-C No:7
      Page(s):
    915-921

    We present recent progress of high-speed Mach-Zehnder modulator technologies for advanced modulation formats. Multi-level quadrature amplitude modulation signal can be synthesized by using parallel Mach-Zehnder modulators. We can generate complicated multi-level optical signals from binary data streams, where binary modulated signals are vectorially summed in optical circuits. Frequency response of each Mach-Zehnder interferometer is also very important to achieve high-speed signals. We can enhance the bandwidth of the response, with thin substrate. 87 Gbaud modulation was demonstrated with a dual-parallel Mach-Zehnder modulator.

  • A Resilient and Efficient Replication Attack Detection Scheme for Wireless Sensor Networks

    Chano KIM  Seungjae SHIN  Chanil PARK  Hyunsoo YOON  

     
    LETTER-Application Information Security

      Vol:
    E92-D No:7
      Page(s):
    1479-1483

    In a large-scale sensor network, replicated hostile nodes may be used for harsh inner attacks. To detect replicas, this paper presents a distributed, deterministic, and efficient approach robust to node compromise attacks without incurring significant resource overheads.

  • Partial Placement of EBG on Both Power and Ground Planes for Broadband Suppression of Simultaneous Switching Noise

    Jong Hwa KWON  Jong Gwan YOOK  

     
    LETTER-Electromagnetic Compatibility(EMC)

      Vol:
    E92-B No:7
      Page(s):
    2550-2553

    In this paper, a novel method of partially placing electromagnetic band-gap (EBG) unit cells on both the power and ground planes in multi-layer PCBs and packages is proposed; it can not only sufficiently eliminate simultaneous switching noise (SSN), but also prevent severe degradation of signal quality in high-speed systems with imperfect reference planes resulting from the perforated structures of uni-planar EBG unit cells. On the assumption that the noise sources and noise-sensitive devices exist only in specific areas, the proposed method partially arranges the EBG unit cells on both the power and ground planes, but only around the critical areas. The SSN suppression performance of the proposed structure is verified by a simulation and measurements.

241-260hit(701hit)