Yiping TANG Kohei HATANO Eiji TAKIMOTO
We introduce the Hexagonal Convolutional Neural Network (HCNN), a modified version of CNN that is robust against rotation. HCNN utilizes a hexagonal kernel and a multi-block structure that enjoys more degrees of rotation information sharing than standard convolution layers. Our structure is easy to use and does not affect the original tissue structure of the network. We achieve the complete rotational invariance on the recognition task of simple pattern images and demonstrate better performance on the recognition task of the rotated MNIST images, synthetic biomarker images and microscopic cell images than past methods, where the robustness to rotation matters.
Fengchuan XU Qiaoyue LI Guilu ZHANG Yasheng CHANG Zixuan ZHENG
This letter presents a global feature-based method for evaluating the no reference quality of scanning electron microscopy (SEM) contrast-distorted images. Based on the characteristics of SEM images and the human visual system, the global features of SEM images are extracted as the score for evaluating image quality. In this letter, the texture information of SEM images is first extracted using a low-pass filter with orientation, and the amount of information in the texture part is calculated based on the entropy reflecting the complexity of the texture. The singular values with four scales of the original image are then calculated, and the amount of structural change between different scales is calculated and averaged. Finally, the amounts of texture information and structural change are pooled to generate the final quality score of the SEM image. Experimental results show that the method can effectively evaluate the quality of SEM contrast-distorted images.
Studies on intrinsic Josephson junctions (IJJs) of cuprate superconductors are reviewed. A system consisting of a few IJJs provides phenomena to test the Josephson phase dynamics and its interaction between adjacent IJJs within a nanometer scale, which is unique to cuprate superconductors. Quasiparticle density of states, which provides direct information on the Cooper-pair formation, is also revealed in the system. In contrast, Josephson plasma emission, which is an electromagnetic wave radiation in the sub-terahertz frequency range from an IJJ stack, arises from the synchronous phase dynamics of hundreds of IJJs coupled globally. This review summarizes a wide range of physical phenomena in IJJ systems having capacitive and inductive couplings with different nanometer and micrometer length scales, respectively.
Kotaro AIKAWA Michihiko SUHARA Takumi KIMURA Junki WAKAYAMA Takeshi MAKINO Katsuhiro USUI Kiyoto ASAKAWA Kouichi AKAHANE Issei WATANABE
S-parameters of InGaAs/InAlAs triple-barrier resonant tunneling diodes (TBRTDs) were measured up to 67 GHz with various mesa areas and various bias voltages. Admittance data of bare TBRTDs are deembedded and evaluated by getting rid of parasitic components with help of electromagnetic simulations for particular fabricated device structures. Admittance spectroscopy up to 67 GHz is applied for bare TBRTDs for the first time and a Kramers-Kronig relation with Lorentzian function is found to be a consistent model for the admittance especially in cases of low bias conditions. Relaxation time included in the Lorentzian function are tentatively evaluated as the order of several pico second.
Masaki NAKAMORI Yukihiro GOTO Tomoya SHIMIZU Nazuki HONDA
We proposed a new method for evaluating the deterioration of messenger wires by using terahertz waves. We use terahertz time-domain spectroscopy to measure several twisted wire samples with different levels of deterioration. We find that each twisted wire sample had a different distribution of reflection intensity which was due to the wires' twist structure. We show that it is possible to assess the degradation from the straight lines present in the reflection intensity distribution image. Furthermore, it was confirmed that our method can be applied to wire covered with resin.
Yuchan WANG Suzhen YUAN Wenxia ZHANG Yuhan WANG
In conclusion, an initialization method has been introduced and studied to improve the SET speed in PCM. Before experiment verification, a two-dimensional finite analysis is used, and the results illustrate the proposed method is feasible to improve SET speed. Next, the R-I performances of the discrete PCM device and the resistance distributions of a 64 M bits PCM test chip with and without the initialization have been studied and analyzed, which confirms that the writing speed has been greatly improved. At the same time, the resistance distribution for the repeated initialization operations suggest that a large number of PCM cells have been successfully changed to be in an intermediate state, which is thought that only a shorter current pulse can make the cells SET successfully in this case. Compared the transmission electron microscope (TEM) images before and after initialization, it is found that there are some small grains appeared after initialization, which indicates that the nucleation process of GST has been carried out, and only needs to provide energy for grain growth later.
In this paper, for the purpose of clarifying the desired ITS information and communication systems considering both safety and social feasibility to prevention overengineering, using a microscopic traffic flow simulator, we discuss the required information acquisition rate of three types of safety driving support systems, that is, the sensor type and the communication type, the sensor and communication fusion type. Performances are evaluated from the viewpoint of preventing overengineering performance using the “TsRm evaluation method” that considers a vehicle approaching within the range of R meters within T seconds as the vehicle with a high possibility of collision, and that evaluates only those vehicles. The results show that regarding the communication radius and the sensing range, overengineering performance may be estimated when all vehicles in the evaluation area are used for evaluations without considering each vehicle's location, velocity and acceleration as in conventional evaluations. In addition, it is clarified that the sensor and communication fusion type system is advantageous by effectively complementing the defects of the sensor type systems and the communication type systems.
Toshiki YAMADA Takahiro KAJI Chiyumi YAMADA Akira OTOMO
We previously developed a new terahertz (THz) wave detection method that utilizes the effect of nonlinear optical (NLO) polymers. The new method provided us with a gapless detection, a wide detection bandwidth, and a simpler optical geometry in the THz wave detection. In this paper, polarization dependences in THz wave detection by the Stark effect were investigated. The projection model was employed to analyze the polarization dependences and the consistency with experiments was observed qualitatively, surely supporting the use of the first-order Stark effect in this method. The relations between THz wave detection by the Stark effect and Stark spectroscopy or electroabsorption spectroscopy are also discussed.
Takamaru MATSUI Shouhei KIDERA
Here, we present a novel spectroscopic imaging method based on the boundary-extraction scheme for wide-beam terahertz (THz) three-dimensional imaging. Optical-lens-focusing systems for THz subsurface imaging generally require the depth of the object from the surface to be input beforehand to achieve the desired azimuth resolution. This limitation can be alleviated by incorporating a wide-beam THz transmitter into the synthetic aperture to automatically change the focusing depth in the post-signal processing. The range point migration (RPM) method has been demonstrated to have significant advantages in terms of imaging accuracy over the synthetic-aperture method. Moreover, in the RPM scheme, spectroscopic information can be easily associated with each scattering center. Thus, we propose an RPM-based terahertz spectroscopic imaging method. The finite-difference time-domain-based numerical analysis shows that the proposed algorithm provides accurate target boundary imaging associated with each frequency-dependent characteristic.
Naoki MATSUDA Hirotaka OKABE Ayako OMURA Miki NAKANO Koji MIYAKE Toshihiko NAGAMURA Hideki KAWAI
Hydrophobic DNA (H-DNA) nano-film was formed as the surface modifier on a thin glass plate working as a slab optical waveguide (SOWF). Cytochrom c (cytc) molecules were immobilized from aqueous solution with direct contacting to the H-DNA nano-film for 30 minutes. From SOWG absorption spectral changes during automated solution exchange (SE) processes, it was found that about 28.1% of cytc molecules was immobilized in the H-DNA nano-film with keeping their reduction functionality by reducing reagent.
Seungtaek SONG Namhyun KIM Sungkil LEE Joyce Jiyoung WHANG Jinkyu LEE
Smartphone users often want to customize the positions and functions of physical buttons to accommodate their own usage patterns; however, this is unfeasible for electronic mobile devices based on COTS (Commercial Off-The-Shelf) due to high production costs and hardware design constraints. In this letter, we present the design and implementation of customized virtual buttons that are localized using only common built-in sensors of electronic mobile devices. We develop sophisticated strategies firstly to detect when a user taps one of the virtual buttons, and secondly to locate the position of the tapped virtual button. The virtual-button scheme is implemented and demonstrated in a COTS-based smartphone. The feasibility study shows that, with up to nine virtual buttons on five different sides of the smartphone, the proposed virtual buttons can operate with greater than 90% accuracy.
Yuki YAMAGUCHI Kohei SHIMIZU Atsushi MATSUZAKI Daisuke SANO Tomoya SATO Yuya TANAKA Hisao ISHII
The gap states of tetratetracontane (C44H90; TTC), which is a model oligomer of polyethylene, was examined by using high-sensitivity UV photoemission spectroscopy (HS-UPS). The high sensitivity enabled us to directly observe the weak gap states distributed in the HOMO-LUMO gap from the valence band top to 3.0 eV below the vacuum level. On the basis of the density-of-states derived from UPS results, the tribocharging nature of polyethylene was discussed in comparison with our previous result for nylon-6,6 film.
Naoki MATSUDA Hirotaka OKABE Ayako OMURA Miki NAKANO Koji MIYAKE Toshihiko NAGAMURA Hideki KAWAI
Hydrophobic DNA (H-DNA) nano-film was formed on a thin glass plate of 50μm thick working as a slab optical waveguide. Bromothymol blue (BTB) molecules were immobilized from aqueous solution with direct contacting to the H-DNA nano-film for 20 minutes. From changes in absorption spectra observed with slab optical wave guide (SOWG) during automated solution exchange (SE) processes for 100 times, it was found that about 95% of bromothymol blue (BTB) molecules was immobilized in the H-DNA nano-film with keeping their functionality of color change responsible to pH change in the solution.
Kentaro TOKORO Shunsuke SAITO Kensaku KANOMATA Masanori MIURA Bashir AHMMAD Shigeru KUBOTA Fumihiko HIROSE
We report room-temperature atomic layer deposition (ALD) of SnO2 using tetramethyltin (TMT) as a precursor and plasma-excited humidified argon as an oxidizing gas and investigate the saturation behaviors of these gases on SnO2-covered Si prisms by IR absorption spectroscopy to determine optimal precursor/oxidizer injection conditions. TMT is demonstrated to adsorb on the SnO2 surface by reacting with surface OH groups, which are regenerated by oxidizing the TMT-saturated surface by plasma-excited humidified argon. We provide a detailed discussion of the growth mechanism. We also report the RT ALD application to the RT TFT fabrication.
Eisuke ITO Yusuke TOMARU Akira IIZUKA Hirokazu HIRAI Tsuyoshi KATO
Automatic detection of immunoreactive areas in fluorescence microscopic images is becoming a key technique in the field of biology including neuroscience, although it is still challenging because of several reasons such as low signal-to-noise ratio and contrast variation within an image. In this study, we developed a new algorithm that exhaustively detects co-localized areas in multi-channel fluorescence images, where shapes of target objects may differ among channels. Different adaptive binarization thresholds for different local regions in different channels are introduced and the condition of each segment is assessed to recognize the target objects. The proposed method was applied to detect immunoreactive spots that labeled membrane receptors on dendritic spines of mouse cerebellar Purkinje cells. Our method achieved the best detection performance over five pre-existing methods.
Effects of electron beam irradiation at 15 keV on graphene are investigated by optical and electron characterization using Raman and two-terminal resistance measurement and photoconductivity measurement. In Raman spectra, increase of defects in D-peak to G-peak ratio by increase of electron irradiation by 70 mC/cm2 was found. Resistance of graphene showed an increase after the irradiation. Rather sensitive change was found in photoconductivity of irradiated graphene under ultra-violet (UV) illumination, suggesting irradiation induced defects affect a photoconductivity properties of the graphene.
Masayuki HIRAO Daichi YAMANAKA Takanori YAZAKI Jun OSAKO Hokuto IIJIMA Takao SHIOKAWA Hikota AKIMOTO Takashi MEGURO
Negative electron affinity (NEA) surfaces can be formed by alternating supply of alkali metals (e.g. Cs, Rb, K) and oxygen on semiconductor surfaces. We have studied adsorption structures of Cs on an As-terminated (2×4) (001) GaAs surface using scanning tunneling microscopy (STM). We found that the initial adsorption of Cs atoms occurs around the step sites in the form of Cs clusters and that the size of clusters is reduced by successive exposure to O2, indicating that As-terminated (2×4) surfaces are relatively stable compared to Ga-terminated surfaces and are not broken by the Cs clusters adsorption.
Tadao NAGATSUMA Shintaro HISATAKE Hai Huy NGUYEN PHAM
This paper describes recent progress of photonically-enabled systems for millimeter-wave and terahertz measurement applications. After briefly explaining signal generation schemes as a foundation of photonics-based approach, system configurations for specific applications are discussed. Then, practical demonstrations are presented, which include frequency-domain spectroscopy, phase-sensitive measurement, electric-field measurement, and 2D/3D imaging.
Kazuki UEHARA Yuhei AKAMINE Naruaki TOMA Moeko NEROME Satoshi ENDO
This paper describes a hierarchical and cooperative transport system with demand responsive buses to improve service quality of public transport system in city area and its suburbs. To provide the demand responsive buses generally requires planning route and schedule called dial-a-ride problem. However, the problem complexity increases with the increasing of the number of requests. Therefore, we propose the hierarchical and cooperative transport system. Framework of the system can reduce scale of the problem by grouping customers. We have evaluated the proposed system on a static simulation and a dynamic microscopic simulation. The simulation result has shown the system could improve service quality by reducing customer's load. Moreover, the result of the dynamic simulation have provided the detailed features of the system.
Takaharu KAMEOKA Atsushi HASHIMOTO
This paper gives an outline of key technologies necessary for science-based agriculture. In order to design future agriculture, present agriculture should be redesigned based on the context of smart agriculture that indicates the overall form of agriculture including a social system while the present precision agriculture shows a technical form of agriculture only. Wireless Sensor Network (WSN) and the various type of optical sensors are assumed to be a basic technology of smart agriculture which intends the harmony with the economic development and sustainable agro-ecosystem. In this paper, the current state and development for the optical sensing for environment and plant are introduced.