The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Radar(388hit)

41-60hit(388hit)

  • Radar Emitter Identification Based on Auto-Correlation Function and Bispectrum via Convolutional Neural Network

    Zhiling XIAO  Zhenya YAN  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2021/06/10
      Vol:
    E104-B No:12
      Page(s):
    1506-1513

    This article proposes to apply the auto-correlation function (ACF), bispectrum analysis, and convolutional neural networks (CNN) to implement radar emitter identification (REI) based on intrapulse features. In this work, we combine ACF with bispectrum for signal feature extraction. We first calculate the ACF of each emitter signal, and then the bispectrum of the ACF and obtain the spectrograms. The spectrum images are taken as the feature maps of the radar emitters and fed into the CNN classifier to realize automatic identification. We simulate signal samples of different modulation types in experiments. We also consider the feature extraction method directly using bispectrum analysis for comparison. The simulation results demonstrate that by combining ACF with bispectrum analysis, the proposed scheme can attain stronger robustness to noise, the spectrograms of our approach have more pronounced features, and our approach can achieve better identification performance at low signal-to-noise ratios.

  • High-Density Implementation Techniques for Long-Range Radar Using Horn and Lens Antennas Open Access

    Akira KITAYAMA  Akira KURIYAMA  Hideyuki NAGAISHI  Hiroshi KURODA  

     
    PAPER

      Pubricized:
    2021/03/12
      Vol:
    E104-C No:10
      Page(s):
    596-604

    Long-range radars (LRRs) for higher level autonomous driving (AD) will require more antennas than simple driving assistance. The point at issue here is 50-60% of the LRR module area is used for antennas. To miniaturize LRR modules, we use horn and lens antenna with highly efficient gain. In this paper, we propose two high-density implementation techniques for radio-frequency (RF) front-end using horn and lens antennas. In the first technique, the gap between antennas was eliminated by taking advantage of the high isolation performance of horn and lens antennas. In the second technique, the RF front-end including micro-strip-lines, monolithic microwave integrated circuits, and peripheral parts is placed in the valley area of each horn. We fabricated a prototype LRR operating at 77 GHz with only one printed circuit board (PCB). To detect vehicles horizontally and vertically, this LRR has a minimum antenna configuration of one Tx antenna and four Rx antennas placed in 2×2 array, and 30 mm thickness. Evaluation results revealed that vehicles could be detected up to 320 m away and that the horizontal and vertical angle error was less than +/- 0.2 degrees, which is equivalent to the vehicle width over 280 m. Thus, horn and lens antennas implemented using the proposed techniques are very suitable for higher level AD LRRs.

  • Gravity Wave Observation Experiment Based on High Frequency Surface Wave Radar

    Zhe LYU  Changjun YU  Di YAO  Aijun LIU  Xuguang YANG  

     
    LETTER-Digital Signal Processing

      Pubricized:
    2021/04/05
      Vol:
    E104-A No:10
      Page(s):
    1416-1420

    Observations of gravity waves based on High Frequency Surface Wave Radar can make contributions to a better understanding of the energy transfer process between the ocean and the ionosphere. In this paper, through processing the observed data of the ionospheric clutter from HFSWR during the period of the Typhoon Rumbia with short-time Fourier transform method, HFSWR was proven to have the capability of gravity wave detection.

  • Noncontact Monitoring of Heartbeat and Movements during Sleep Using a Pair of Millimeter-Wave Ultra-Wideband Radar Systems Open Access

    Takuya SAKAMOTO  Sohei MITANI  Toru SATO  

     
    PAPER-Sensing

      Pubricized:
    2020/10/06
      Vol:
    E104-B No:4
      Page(s):
    463-471

    We experimentally evaluate the performance of a noncontact system that measures the heartbeat of a sleeping person. The proposed system comprises a pair of radar systems installed at two different positions. We use millimeter-wave ultra-wideband multiple-input multiple-output array radar systems and evaluate the performance attained in measuring the heart inter-beat interval and body movement. The importance of using two radar systems instead of one is demonstrated in this paper. We conduct three types of experiments; the first and second experiments are radar measurements of three participants lying on a bed with and without body movement, while the third experiment is the radar measurement of a participant actually sleeping overnight. The experiments demonstrate that the performance of the radar-based vital measurement strongly depends on the orientation of the person under test. They also show that the proposed system detects 70% of rolling-over movements made overnight.

  • Subsurface Velocity Change Estimation of Pavement with Multistatic GPR System

    Kazutaka KIKUTA  Li YI  Lilong ZOU  Motoyuki SATO  

     
    BRIEF PAPER-Microwaves, Millimeter-Waves

      Pubricized:
    2020/08/14
      Vol:
    E104-C No:4
      Page(s):
    144-147

    In this paper, we propose a cross-correlation method applied to multistatic ground penetrating radar (GPR) data sets to detect road pavement damage. Pavement cracks and delamination cause variations in electromagnetic wave propagation. The proposed method can detect velocity change using cross-correlation of data traces at different times. An artificially damaged airport taxiway model was measured, and the method captures the positions of damaged parts.

  • A Novel Large-Angle ISAR Imaging Algorithm Based on Dynamic Scattering Model

    Ping LI  Feng ZHOU  Bo ZHAO  Maliang LIU  Huaxi GU  

     
    PAPER-Electromagnetic Theory

      Pubricized:
    2020/04/17
      Vol:
    E103-C No:10
      Page(s):
    524-532

    This paper presents a large-angle imaging algorithm based on a dynamic scattering model for inverse synthetic aperture radar (ISAR). In this way, more information can be presented in an ISAR image than an ordinary RD image. The proposed model describes the scattering characteristics of ISAR target varying with different observation angles. Based on this model, feature points in each sub-image of the ISAR targets are extracted and matched using the scale-invariant feature transform (SIFT) and random sample consensus (RANSAC) algorithms. Using these feature points, high-precision rotation angles are obtained via joint estimation, which makes it possible to achieve a large angle imaging using the back-projection algorithm. Simulation results verifies the validity of the proposed method.

  • Feedback Signal Processing that Improves Accuracy of Velocity and Direction of Arrival Estimation for Automotive Radar

    Saki SUSA TANAKA  Akira KITAYAMA  Yukinori AKAMINE  Hiroshi KURODA  

     
    BRIEF PAPER-Microwaves, Millimeter-Waves

      Pubricized:
    2020/04/17
      Vol:
    E103-C No:10
      Page(s):
    543-546

    For automotive millimeter radar, a method using a multi-input multi-output (MIMO) array antenna is essential for high angle resolution with module miniaturization. MIMO enables us to extend an antenna array with virtual antennas, and a large antenna array aperture enables high resolution angle estimation. Time division multiplex (TDM) MIMO, which is a method to generate virtual array antennas, makes it easy to design radar system integrated circuits. However, this method leads to two issues in signal processing; the phase error reduces the accuracy of angle estimation of a moving target, and the maximum detectable velocity decreases in inverse proportion to the number of Tx antennas. We analytically derived this phase error and proposed a method to correct the error. Because the phase error of TDM-MIMO is proportional to the target velocity, accurate estimation of the target velocity is an important issue for phase error correction. However, the decrease of the maximum detectable velocity in TDM-MIMO reduces the accuracy of both velocity estimation and angle estimation. To solve these issues, we propose new signal processing for range-velocity estimation for TDM-MIMO radar. By using the feedback result of the estimated direction of arrival (DoA), we can avoid decreasing the maximum detectable velocity. We explain our method with our simulation results.

  • Horn and Lens Antenna with Low Height and Low Antenna Coupling for Compact Automotive 77-GHz Long-Range Radar

    Akira KURIYAMA  Hideyuki NAGAISHI  Hiroshi KURODA  Akira KITAYAMA  

     
    PAPER-Microwaves, Millimeter-Waves

      Pubricized:
    2020/04/08
      Vol:
    E103-C No:10
      Page(s):
    426-433

    Smaller antenna structures for long-range radar transmitters and receivers operating in the 77-GHz band for automotive application have been achieved by using antennas with a horn, lens, and microstrip antenna. The transmitter (Tx) antenna height was reduced while keeping the antenna gain high and the antenna substrate small by developing an antenna structure composed of two differential horn and lens antennas in which the diameter and focus distance of the lenses were half those in the previous design. The microstrip antennas are directly connected to the differential outputs of a monolithic microwave integrated circuit. A Tx antenna fabricated using commercially available materials was 14mm high and had an output-aperture of 18×44mm. It achieved an antenna gain of 23.5dBi. The antenna substrate must be at least 96mm2. The antenna had a flat beam with half-power elevation and azimuth beamwidths of 4.5° and 21°, respectively. A receiver (Rx) antenna array composed of four sets of horn and lens antennas with an output-aperture of 9×22mm and a two-by-two array configuration was fabricated for application in a newly proposed small front-end module with azimuth direction of arrival (DOA) estimation. The Rx antenna array had an antenna coupling of less than -31dB in the 77-GHz band, which is small enough for DOA estimation by frequency-modulated continuous wave radar receivers even though the four antennas are arranged without any separation between their output-apertures.

  • Dual-Polarized Metasurface Using Multi-Layer Ceramic Capacitors for Radar Cross Section Reduction

    Thanh-Binh NGUYEN  Naoyuki KINAI  Naobumi MICHISHITA  Hisashi MORISHITA  Teruki MIYAZAKI  Masato TADOKORO  

     
    PAPER-Electromagnetic Compatibility(EMC)

      Pubricized:
    2020/02/18
      Vol:
    E103-B No:8
      Page(s):
    852-859

    This paper proposes a dual-polarized metasurface that utilizes multi-layer ceramic capacitors (MLCCs) for radar cross-section (RCS) reduction in the 28GHz band of the quasi-millimeter band. MLCCs are very small in size; therefore, miniaturization of the unit cell structure of the metamaterial can be expected, and the MLCCs can be periodically loaded onto a narrow object. First, the MLCC structure was modeled as a basic structure, and the effective permeability of the MLCC was determined to investigate the influence of the arrangement direction on MLCC interaction. Next, the unit cell structure of the dual-polarized metasurface was designed for an MLCC set on a dielectric substrate. By analyzing the infinite periodic structure and finite structure, the monostatic reduction characteristics, oblique incidence characteristics, and dual-polarization characteristics of the proposed metasurface were evaluated. In the case of the MLCCs arranged in the same direction, the monostatic RCS reduction was approximately 30dB at 29.8GHz, and decreased when the MLCCs were arranged in a checkerboard pattern. The monostatic RCS reductions for the 5 × 5, 10 × 10, and 20 × 20 divisions were roughly the same, i.e., 10.8, 9.9, and 10.3dB, respectively. Additionally, to validate the simulated results, the proposed dual-polarized metasurface was fabricated and measured. The measured results were found to approximately agree with the simulated results, confirming that the RCS can be reduced for dual-polarization operation.

  • Contrast Enhancement of 76.5 GHz-Band Millimeter-Wave Images Using Near-Field Scattering for Non-Destructive Detection of Concrete Surface Cracks

    Akihiko HIRATA  Makoto NAKASHIZUKA  Koji SUIZU  Yoshikazu SUDO  

     
    PAPER-Microwaves, Millimeter-Waves

      Pubricized:
    2019/12/06
      Vol:
    E103-C No:5
      Page(s):
    216-224

    This paper presents non-destructive millimeter-wave (MMW) imaging of sub-millimeter-wide cracks on a concrete surface covered with paper. We measured the near-field scattering of 76.5 GHz-MMW signals at concrete surface cracks for detection of the sub-millimeter-wide cracks. A decrease in the received signal magnitude by near-field scattering at the fine concrete surface crack was slight, which yielded an unclear MMW image contrast of fine cracks at the concrete surface. We have found that the received signal magnitude at concrete surface crack is larger than that at the surface without a crack, when the paper thickness is almost equal to n/4 of the effective wavelength of the MMW signal in the paper (n=1, 3, 5 ...), thus, making MMW image contrast at the surface crack reversed. By calculating the difference of two MMW images obtained from different paper thickness, we were able to improve the MMW image contrast at the surface crack by up to 3.3 dB.

  • Compensation of Phase Errors in the Frequency Domain for Multi-Carrier LFMCW MIMO Radar

    Chen MIAO  Peishuang NI  Mengjie JIANG  Yue MA  Hui TANG  Wen WU  

     
    LETTER-Digital Signal Processing

      Vol:
    E103-A No:4
      Page(s):
    710-714

    This letter proposes a blind phase compensation method for the phase errors in the Multi-Carrier Multiple-input multiple-output (MIMO) radar, which decouples the range and DOA coupling. The phase errors under the Linear Frequency Modulated Continuous Waveform (LFMCW) scheme are firstly derived, followed with the signal processing steps. Further, multiple targets with certain velocities can be handled uniformly without pre-knowledge of the actual range information of the targets. The evaluations of the DOA estimation performance are carried out through simulations, which validate the effectiveness of the proposed method.

  • Range Points Migration Based Spectroscopic Imaging Algorithm for Wide-Beam Terahertz Subsurface Sensor Open Access

    Takamaru MATSUI  Shouhei KIDERA  

     
    BRIEF PAPER-Electromagnetic Theory

      Pubricized:
    2019/09/25
      Vol:
    E103-C No:3
      Page(s):
    127-130

    Here, we present a novel spectroscopic imaging method based on the boundary-extraction scheme for wide-beam terahertz (THz) three-dimensional imaging. Optical-lens-focusing systems for THz subsurface imaging generally require the depth of the object from the surface to be input beforehand to achieve the desired azimuth resolution. This limitation can be alleviated by incorporating a wide-beam THz transmitter into the synthetic aperture to automatically change the focusing depth in the post-signal processing. The range point migration (RPM) method has been demonstrated to have significant advantages in terms of imaging accuracy over the synthetic-aperture method. Moreover, in the RPM scheme, spectroscopic information can be easily associated with each scattering center. Thus, we propose an RPM-based terahertz spectroscopic imaging method. The finite-difference time-domain-based numerical analysis shows that the proposed algorithm provides accurate target boundary imaging associated with each frequency-dependent characteristic.

  • Joint Angle, Velocity, and Range Estimation Using 2D MUSIC and Successive Interference Cancellation in FMCW MIMO Radar System

    Jonghyeok LEE  Sunghyun HWANG  Sungjin YOU  Woo-Jin BYUN  Jaehyun PARK  

     
    PAPER-Sensing

      Pubricized:
    2019/09/11
      Vol:
    E103-B No:3
      Page(s):
    283-290

    To estimate angle, velocity, and range information of multiple targets jointly in FMCW MIMO radar, two-dimensional (2D) MUSIC with matched filtering and FFT algorithm is proposed. By reformulating the received FMCW signal of the colocated MIMO radar, we exploit 2D MUSIC to estimate the angle and Doppler frequency of multiple targets. Then by using a matched filter together with the estimated angle and Doppler frequency and FFT operation, the range of the target is estimated. To effectively estimate the parameters of multiple targets with large distance differences, we also propose a successive interference cancellation method that uses the orthogonal projection. That is, rather than estimating the multiple target parameters simultaneously using 2D MUSIC, we estimate the target parameters sequentially, in which the parameters of the target having strongest reflected power are estimated first and then, their effect on the received signal is canceled out by using the orthogonal projection. Simulations verify the performance of the proposed algorithm.

  • Mutual Interference Suppression and Signal Restoration in Automotive FMCW Radar Systems

    Sohee LIM  Seongwook LEE  Jung-Hwan CHOI  Jungmin YOON  Seong-Cheol KIM  

     
    PAPER-Electromagnetic Compatibility(EMC)

      Pubricized:
    2018/12/11
      Vol:
    E102-B No:6
      Page(s):
    1198-1208

    This paper presents an interference suppression and signal restoration technique that can create the clean signals required by automotive frequency-modulated continuous wave radar systems. When a radar signal from another radar system interferes with own transmitted radar signal, the target detection performance is degraded. This is because the beat frequency corresponding to the target cannot be estimated owing to the increase in the noise floor. In this case, advanced weighted-envelope normalization or wavelet denoising can be used to mitigate the effect of the interference; however, these methods can also lead to the loss of the desired signal containing the range and velocity information of the target. Therefore, we propose a method based on an autoregressive model to restore a signal damaged by mutual interference. The method uses signals that are not influenced by the interference to restore the signal. In experiments conducted using two different automotive radar systems, our proposed method is demonstrated to effectively suppress the interference and restore the desired signal. As a result, the noise floor resulting from the mutual interference was lowered and the beat frequency corresponding to the desired target was accurately estimated.

  • Design and Analysis of Multiple False Targets against Pulse Compression Radar Based on OS-CFAR

    Xiang LIU  Dongsheng LI  

     
    BRIEF PAPER-Electronic Circuits

      Vol:
    E102-C No:6
      Page(s):
    495-498

    A multi-carrier and blind shift-frequency jamming(MCBSFJ) against the pulsed compression radar with order-statistic (OS) constant false alarm rate (CFAR) detector is proposed. Firstly, according to the detection principle of the OS-CFAR detector, the design requirements for jamming signals are proposed. Then, some key parameters of the jamming are derived based on the characteristics of the OS-CFAR detector. As a result, multiple false targets around the real target with the quantity, amplitude and space distribution which can be controlled are produced. The simulation results show that the jamming method can reduce the detection probability of the target effectively.

  • 24GHz FMCW Radar Module for Pedestrian Detection in Crosswalks

    You-Sun WON  Dongseung SHIN  Miryong PARK  Sohee JUNG  Jaeho LEE  Cheolhyo LEE  Yunjeong SONG  

     
    BRIEF PAPER-Microwaves, Millimeter-Waves

      Vol:
    E102-C No:5
      Page(s):
    416-419

    This paper reports a 24GHz ISM band radar module for pedestrian detection in crosswalks. The radar module is composed of an RF transceiver board, a baseband board, and a microcontroller unit board. The radar signal is a sawtooth frequency-modulated continuous-wave signal with a center frequency of 24.15GHz, a bandwidth of 200MHz, a chirp length of 80µs, and a pulse repetition interval of 320µs. The radar module can detect a pedestrian on a crosswalk with a width of 4m and a length of 14m. The radar outputs the range, angle, and speed of the detected pedestrians every 50ms by radar signal processing and consumes 7.57W from 12V power supply. The size of the radar module is 110×70mm2.

  • Wideband Radar Frequency Measurement Receiver Based on FPGA without Mixer Open Access

    Xinqun LIU  Yingxiao ZHAO  

     
    LETTER-Computer System

      Pubricized:
    2019/01/18
      Vol:
    E102-D No:4
      Page(s):
    859-862

    In this letter, a flexible and compatible with fine resolution radar frequency measurement receiver is designed. The receiver is implemented on the platform of Virtex-5 Field Programmable Grid Array (FPGA) from Xilinx. The Digital Down Conversion (DDC) without mixer based on polyphase filter has been successfully introduced in this receiver to obtain lower speed data flow and better resolution. This receiver can adapt to more modulation types and higher density of pulse flow, up to 200000 pulses per second. The measurement results indicate that the receiver is capable of detecting radar pulse signal of 0.2us to 2.5ms width with a major frequency root mean square error (RMSE) within 0.44MHz. Moreover, the wider pulse width and the higher decimation rate of DDC result in better performance. This frequency measurement receiver has been successfully used in a spaceborne radar system.

  • Passive Localization Algorithm for Spaceborne SAR Using NYFR and Sparse Bayesian Learning

    Yifei LIU  Yuan ZHAO  Jun ZHU  Bin TANG  

     
    LETTER-Digital Signal Processing

      Vol:
    E102-A No:3
      Page(s):
    581-585

    A novel Nyquist Folding Receiver (NYFR) based passive localization algorithm with Sparse Bayesian Learning (SBL) is proposed to estimate the position of a spaceborne Synthetic Aperture Radar (SAR).Taking the geometry and kinematics of a satellite into consideration, this paper presents a surveillance geometry model, which formulates the localization problem into a sparse vector recovery problem. A NYFR technology is utilized to intercept the SAR signal. Then, a convergence algorithm with SBL is introduced to recover the sparse vector. Furthermore, simulation results demonstrate the availability and performance of our algorithm.

  • Design Optimization of Radar Absorbent Material for Broadband and Continuous Oblique Incidence Characteristics

    Yuka ISHII  Naobumi MICHISHITA  Hisashi MORISHITA  Yuki SATO  Kazuhiro IZUI  Shinji NISHIWAKI  

     
    PAPER-Electromagnetic Compatibility(EMC)

      Pubricized:
    2018/08/21
      Vol:
    E102-B No:2
      Page(s):
    216-223

    Radar-absorbent materials (RAM) with various characteristics, such as broadband, oblique-incidence, and polarization characteristics, have been developed according to applications in recent years. This paper presents the optimized design method of two flat layers RAM with both broadband and oblique-incidence characteristics for the required RAM performance. The oblique-incidence characteristics mean that the RAM is possible to absorb radio waves continuously up to the maximum incidence angle. The index of the wave-absorption amount is 20dB, corresponding to an absorption rate of 99%. Because determination of the electrical material constant of each layer is the most important task with respect to the received frequency and the incidence angle, we optimized the values by using Non-dominated sorting genetic algorithm-II (NSGA-II). Two types of flat-layer RAM composed of dielectric and magnetic materials were designed and their characteristics were evaluated. Consequently, it was confirmed that oblique-incidence characteristics were better for the RAM composed of dielectric materials. The dielectric RAM achieved an incidence angle of up to 60° with broadband characteristics and a relative bandwidth of 77.01% at the transverse-magnetic (TM) wave incidence. In addition, the magnetic RAM could lower the minimum frequency of the system more than the dielectric RAM. The minimum frequency of the magnetic RAM was 1.38GHz with a relative bandwidth of 174.18% at TM-wave incidence and an incidence angle of 45°. We confirmed that it is possible to design RAM with broadband characteristics and continuous oblique-incidence characteristics by using the proposed method.

  • A Low Cost Solution of Hand Gesture Recognition Using a Three-Dimensional Radar Array

    Shengchang LAN  Zonglong HE  Weichu CHEN  Kai YAO  

     
    PAPER-Sensing

      Pubricized:
    2018/08/21
      Vol:
    E102-B No:2
      Page(s):
    233-240

    In order to provide an alternative solution of human machine interfaces, this paper proposed to recognize 10 human hand gestures regularly used in the consumer electronics controlling scenarios based on a three-dimensional radar array. This radar array was composed of three low cost 24GHz K-band Doppler CW (Continuous Wave) miniature I/Q (In-phase and Quadrature) transceiver sensors perpendicularly mounted to each other. Temporal and spectral analysis was performed to extract magnitude and phase features from six channels of I/Q signals. Two classifiers were proposed to implement the recognition. Firstly, a decision tree classifier performed a fast responsive recognition by using the supervised thresholds. To improve the recognition robustness, this paper further studied the recognition using a two layer CNN (Convolutional Neural Network) classifier with the frequency spectra as the inputs. Finally, the paper demonstrated the experiments and analysed the performances of the radar array respectively. Results showed that the proposed system could reach a high recognition accurate rate higher than 92%.

41-60hit(388hit)