The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] SC(4570hit)

4401-4420hit(4570hit)

  • Spectral Domain Analysis for Scattering Properties of Periodic Arrays on Dielectric Substrates

    Hideaki WAKABAYASHI  Masanobu KOMINAMI  Hiroji KUSAKA  Hiroshi NAKASHIMA  

     
    LETTER

      Vol:
    E76-B No:12
      Page(s):
    1587-1589

    A full-wave analysis for the scattering problem of infinite periodic arrays on dielectric substrates excited by a circularly-polarized incident wave is presented. The impedance boundary condition is solved by using the moment method in the spectral domain. Numerical results are given and scattering properties are discussed.

  • Generating a Binary Markov Chain by a Discrete-Valued Auto-Regressive Equation

    Junichi NAKAYAMA  Hiroya MOTOYAMA  

     
    LETTER-Digital Signal Processing

      Vol:
    E76-A No:12
      Page(s):
    2114-2118

    This paper gives a systematic approach to generate a Markov chain by a discrete-valued auto-regressive equation, which is a a nonlinear auto-regressive equation having a discrete-valued solution. The power spectrum, the correlation function and the transition probability are explicitly obtained in terms of the discrete-valued auto-regressive equation. Some computer results are illustrated in figures.

  • On a Hysteresis Oscillator Including Periodic Thresholds

    Ken'ichi KOHARI  Toshimichi SAITO  Hiroshi KAWAKAMI  

     
    PAPER-Nonlinear Circuits and Systems

      Vol:
    E76-A No:12
      Page(s):
    2102-2107

    In this article, we consider a hysteresis oscillator which includes periodic thresholds. This oscillator relates to a model of human's sleep-wake cycles. Deriving a one dimensional return map rigorously, we can clarify existence regions of various periodic attractors in some parameter subspace. Also, we clarify co-existence regions of periodic attractors and existence regions of quasi-periodic attractors. Some of theoretical results are confirmed by laboratory measurements.

  • A Model for Explaining a Phenomenon in Creative concept Formation

    Koichi HORI  

     
    PAPER-Artificial Intelligence and Cognitive Science

      Vol:
    E76-D No:12
      Page(s):
    1521-1527

    This paper gives a model to explain one phenomenon found in the process of creative concept formation, i.e. the phenomenon that people often get trapped in some state where the mental world remains nebulous and sometimes suddenly make a jump to a new concept. This phenomenon has been qualitatively explained mainly by the philosophers but there have not been models for explaining it quantitatively. Such model is necessary in a new research field to study the systems for aiding human creative activities. So far, the work on creation aid has not had theoretical background and the systems have been built based only on trial and error. The model given in this paper explains some aspects of the phenomena found in creative activities and give some suggestions for the future systems for aiding creative concept formation.

  • Analysis of Electromagnetic Wave Scattering by a Cavity Model with Lossy Inner Walls

    Noh-Hoon MYUNG  Young-Seek SUN  

     
    PAPER-Antennas and Propagation

      Vol:
    E76-B No:11
      Page(s):
    1445-1449

    An approximate but sufficiently accurate high frequency solution is developed in this paper for analyzing the problem of electromagnetic plane wave scattering by an open-ended, perfectly-conducting, semi-infinite parallel-plate waveguide with a thin layer of lossy or absorbing material on its inner wall, and with a planar termination inside. The high frequency solution combines uniform geometrical theory of diffraction (UTD) and aperture integration (AI) methods. The present method has several advantages in comparison with other methods.

  • Changing Operational Modes in the Context of Pre Run-Time Scheduling

    Gerhard FOHLER  

     
    PAPER

      Vol:
    E76-D No:11
      Page(s):
    1333-1340

    Typical processes controlled by hard real-time computer systems undergo several, mutually exclusive modes of operation. By deterministically switching among a number of static schedules, a pre run-time scheduled system is able to adapt to changing environmental situations. This paper presents concepts for specification of mode changes, construction of static schedules for modes and transitions, and timely run-time execution of mode changes. We propose concepts for mode changes in the context pre run-time scheduled hard real-time systems. While MARS is used to illustrate the concepts' application, they are applicable to a variety of systems. Our methods adhere closely to the ones established for single modes. By decomposing the system into a set of disjoint modes, the design process and its comprehension are facilitated, testing efforts are reduced significantly, and solutions are enabled which do not exist if all system activities of all modes are combined into a single schedule.

  • Separated Equivalent Edge Current Method for Calculating Scattering Cross Sections of Polyhedron Structures

    Yonehiko SUNAHARA  Hiroyuki OHMINE  Hiroshi AOKI  Takashi KATAGI  Tsutomu HASHIMOTO  

     
    PAPER-Antennas and Propagation

      Vol:
    E76-B No:11
      Page(s):
    1439-1444

    This paper describes a novel method to calculate the fields scattered by a polyhedron structure for an incident plane wave. In this method, the fields diffracted by an edge are calculated using the equivalent edge currents which are separated into components dependent on each of the two surfaces which form the edge. The separated equivalent edge currents are based on the Geometrical Theory of Diffraction (GTD). Using this Separated Equivalent Edge Current Method (SEECM) , fields scattered by a polyhedron structure can be calculated without special treatment of the singularity in the diffraction coefficient. This method can be also applied successfully to structures with convex surfaces by modeling them as polyhedron structures.

  • Manifestation of Linguistic Information in the Voice Fundamental Frequency Contours of Spoken Japanese

    Hiroya FUJISAKI  Keikichi HIROSE  Noboru TAKAHASHI  

     
    PAPER

      Vol:
    E76-A No:11
      Page(s):
    1919-1926

    Prosodic features of the spoken Japanese play an important role in the transmission of linguistic information concerning the lexical word accent, the sentence structure and the discourse structure. In order to construct prosodic rules for synthesizing high-quality speech, therefore, prosodic features of speech should be quantitatively analyzed with respect to the linguistic information. With a special focus on the fundamental frequency contour, we first define four prosodic units for the spoken Japanese, viz., prosodic word, prosodic phrase, prosodic clause and prosodic sentence, based on a decomposition of the fundamental frequency contour using a functional model for the generation process. Syntactic units are also introduced which have rough correspondence to these prosodic units. The relationships between the linguistic information and the characteristics of the components of the fundamental frequency contour are then described on the basis of results obtained by the analysis of two sets of speech material. Analysis of weathercast and newscast sentences showed that prosodic boundaries given by the manner of continuation/termination of phrase components fall into three categories, and are primarily related to the syntactic boundaries. On the other hand, analysis of noun phrases with various combinations of word accent types, syntactic structures, and focal conditions, indicated that the magnitude and the shape of the accent components, which of course reflect the information concerning the lexical accent types of constituent words, are largely influenced by the focal structure. The results also indicated that there are cases where prosody fails to meet all the requirements presented by word accent, syntax and discourse.

  • An Effective Defect-Repair Scheme for a High Speed SRAM

    Sadayuki OOKUMA  Katsuyuki SATO  Akira IDE  Hideyuki AOKI  Takashi AKIOKA  Hideaki UCHIDA  

     
    PAPER-SRAM

      Vol:
    E76-C No:11
      Page(s):
    1620-1625

    To make a fast Bi-CMOS SRAM yield high without speed degradation, three defect-repair methods, the address comparison method, the fuse decoder method and the distributed fuse method, were considered in detail and their advantages and disadvantages were made clear. The distributed fuse method is demonstrated to be further improved by a built-in fuse word driver and a built-in fuse column selector, and fuse analog switches. This enhanced distributed fuse scheme was examined in a fast Bi-CMOS SRAM. A maximun access time of 14 ns and a chip size of 8.8 mm17.4 mm are expected for a 4 Mb Bi-CMOS SRAM in the future.

  • Analysis of Transient Electromagnetic Fields Radiated by Electrostatic Discharges

    Osamu FUJIWARA  Norio ANDOH  

     
    LETTER-Electromagnetic Compatibility

      Vol:
    E76-B No:11
      Page(s):
    1478-1480

    For analyzing the transient electromagnetic fields caused by electrostatic discharge (ESD), a new ESD model is presented here. Numerical calculation is also given to explain the distinctive phenomenon being well-recognized in the ESD event.

  • Scattering of Electromagnetic Waves by a Dielectric Grating with Planar Slanted-Fringe

    Tsuneki YAMASAKI  Hirotaka TANAKA  

     
    PAPER-Scattering and Diffraction

      Vol:
    E76-C No:10
      Page(s):
    1435-1442

    The scattering of electromagnetic waves by a dielectric grating with planar slanted-fringe is analyzed using the improved Fourier series expansion method. In the analysis, the slanted grating region is divided into layers to make an assembly of stratified thin modulated index layers. This method can be applied to a wide range of periodic structures and is especially effective in the case of planar slanted grating, because the electromagnetic fields in the each layer can easily be obtained by shifting the solution in the first layer. In this paper, the numerical results are given for grating with rectangular and sinusoidal dielectric profiles, and for TM and TE cases of arbitrary incident angle. The diffraction efficiencies obtained by the presented method are compared with the results by the coupled-wave approach; the influences of the slant angle on the diffraction efficiencies at the Wood's anomaly and at the coupling resonance frequency are also discussed.

  • Inverse Scattering Analysis Based on the Equivalent Source Method for Perfectly Conducting Cylinders Using Scattered Data of Several Frequencies

    Mario G. FROMOW RANGEL  Akira NOGUCHI  

     
    PAPER-Inverse Problem

      Vol:
    E76-C No:10
      Page(s):
    1456-1460

    The inverse problem we consider in this paper seeks, based on the equivalent source method, to determine the shape of perfectly conducting cylinders from the scattered farfield data obtained by using several incident waves. When incident waves of different frequencies are used, the shape of the scatterer can be reconstructed by employing only a few number of observation points. In the reconstruction problem, to determine the shape of the scatterer, the conjugate gradients method is applied. The general approach is applicable to cylindrical scatterers of arbitrary shape. Results of numerical simulations are presented to support the suggested approach.

  • Transient Backward and Forward Scattering of Electromagnetic Waves by a Conducting Rectangular Cylinder with an Open Side-Wall--The Case of a Half Sine Pulse lncident on the Open Side and the Closed Side--

    Shinichiro OHNUKI  Tsuneki YAMASAKI  Takashi HINATA  

     
    PAPER-Transient Field

      Vol:
    E76-C No:10
      Page(s):
    1474-1480

    The transient scattering of a half sine pulse wave by a conducting rectangular cylinder with an open sidewall is rigorously analyzed by using the point matching method (taking into account the edge condition exactly) combined with the fast inversion of Laplace transform. Numerical results are presented for back scattered and forward scattered responses of the far fields when a half sine pulse is incident on the open side and the closed side of the cylinder. The physical meaning of the transient responses is discussed in detail. The comparison of the responses with those by a perfect conducting rectangular cylinder is presented.

  • Detecting Contours in Image Sequences

    Kenji NAGAO  Masaki SOHMA  Katsura KAWAKAMI  Shigeru ANDO  

     
    PAPER

      Vol:
    E76-D No:10
      Page(s):
    1162-1173

    This paper describes a new algorithm for finding the contours of a moving object in an image sequence. A distinctive feature of this algorithm is its complete bottom-up strategy from image data to a consistent contour description. In our algorithm, an input image sequence is immediately converted to a complete set of quasi logical spatio-temporal measures on each pixel, which provide constraints on varying brightness. Then, candidate regions in which to localize the contour are bounded based on consistent grouping among neighboring measures. This reduces drastically the ambiguity of contour location. Finally, Some mid-level constraints on spatial and temporal smoothness of moving boundaries are invoked, and they are combined with these low-level measures in the candidate regions. This is performed efficiently by the regularization over the restricted trajectory of the moving boundary in the candidate regions. Since any quantity is dimensionless, the results are not affected by varying conditions of camera and objects. We examine the efficiency of this algorithm through several experiments on real NTSC motion pictures with dynamic background and natulal textures.

  • Solder Joint Inspection Using Air Stimulation Speckle Vibration Detection Method and Fluorescence Detection Method

    Takashi HIROI  Kazushi YOSHIMURA  Takanori NINOMIYA  Toshimitsu HAMADA  Yasuo NAKAGAWA  Shigeki MIO  Kouichi KARASAKI  Hideaki SASAKI  

     
    PAPER

      Vol:
    E76-D No:10
      Page(s):
    1144-1152

    The fast and highly reliable method reported here uses two techniques to detect all types of defects, such as unsoldered leads, solder bridges, and misalignes leads in the minute solder joints of high density mounted devices. One technique uses external force applied by an air jet that vibrates or shifts unsoldered leads. The vibration and shift is detected as a change in the speckle pattern produced by laser illumination of the solder joints. The other technique uses fluorescence generated by short-wavelength laser illumination. The fluorescence from a printed circuit board produces a silhouette of the solder joint and this image is processed to detect defects. Experimental results show that this inspection method detects all kinds of defects accurately and with a very low false alarm rate.

  • Radar Image Cross-Range Scaling Method--By Analysis of Picture Segments--

    Masaharu AKEI  Masato NIWA  Mituyoshi SHINONAGA  Hiroshi MIYAUCHI  Masanori MATUMURA  

     
    PAPER-Radar System

      Vol:
    E76-B No:10
      Page(s):
    1258-1262

    In the ISAR (Inverse Synthetic Aperture Radar), when a target is to be recognized by use of the radar image produced from the radar echoes, it is important first to estimate the scale of the target. To estimate the scale, the rotating motion of the target must be estimated. This paper describes a method for estimating the scale of the target from the information on the radar image by converting the target figure into a simple model and estimating the rotating motion of the target.

  • Generating Binary Random Images by a Discrete-Valued Auto-Regressive Equation

    Junichi NAKAYAMA  

     
    LETTER-Digital Image Processing

      Vol:
    E76-A No:10
      Page(s):
    1870-1873

    As a new method to generate a homogeneous, random, binary image with a rational power spectrum, this paper proposes a discrete-valued auto-regressive equation, of which random coefficients and white noise excitation are all discrete-valued. The average and spectrum of the binary image are explicitly obtained in terms of the random coefficients. Some computer results are illustrated in figures.

  • Numerical Analysis of the Effective Dielectric Constant of the Medium where Dielectric Spheres are Randomly Distributed

    Mitsuo TATEIBA  Yukihisa NANBU  Toshio OE  

     
    PAPER-Random Medium

      Vol:
    E76-C No:10
      Page(s):
    1461-1467

    The effective dielectric constant εeff of discrete random medium composed of many dielectric spheres has been analyzed by EFA (Effective Field Approximation), QCA (Quasicrystalline Approximation) and QCA-CP (Quasicrystalline Approximation and Coherent Potential) in the case where the optical path length is very large in the medium. These methods lead to a reasonable K for non-large dielectric constants of spheres, while their methods yield an unphysical dependence of εeff on large dielectric constants of spheres: that is, the εeff does not become large for increasing the dielectric constant. In this paper, we remove the unphysical dependence and present new results for εeff of our method, comparing with the results for εeff of EFA, QCA and QCA-CP.

  • Compact Test Sequences for Scan-Based Sequential Circuits

    Hiroyuki HIGUCHI  Kiyoharu HAMAGUCHI  Shuzo YAJIMA  

     
    PAPER

      Vol:
    E76-A No:10
      Page(s):
    1676-1683

    Full scan design of sequential circuits results in greatly reducing the cost of their test generation. However, it introduces the extra expense of many test clocks to control and observe the values of flip-flops because of the need to shift values for the flip-flops into the scan panh. In this paper we propose a new method of generating compact test sequences for scan-based sequential circuits on the assumption that the number of shift clocks is allowed to vary for each test vector. The method is based on Boolean function manipulation using a shared binary decision diagram (SBDD). Although the test generation algorithm is basically for general sequential circuits, the computational cost is much lower for scan-based sequential circuits than for non-scanbased sequential circuits because the length of a test sequence for each fault is limited. Experimental results show that, for all the tested circuits, test sequences generated by the method require much smaller number of test clocks than compact or minimum test sets for combinational logic part of scan-based sequential circuits. The reduction rate was 48% on the average in the experiments.

  • A Parallel Scheduling of Multi-Step Diakoptics for Three Dimensional Finite Differece Method

    Kazuhiro MOTEGI  Shigeyoshi WATANABE  

     
    PAPER-Numerical Analysis and Self-Validation

      Vol:
    E76-A No:10
      Page(s):
    1822-1829

    Many simulators in several fields use the finite difference method and they must solve the large sparse linear equations related. Particularly, if we use the direct solution method because of the convergency problem, it is necessary to adopt a method that can reduce the CPU time greatly. The Multi-Step Diakoptics (MSD) method is proposed as a parallel computation method with a direct solution which is based on Diakoptics, that is, a tearing-based parallel computation method for the sparse linear equations. We have applied the MSD algorithm for one, two and three dimensional finite difference methods. We require a parallel schedule that automatically partitions the desired object's region for study, assigns the processor elements to the partitioned regions according to the MSD method, and controls communications among the processor elements. This paper describes a parallel scheduling that was extended from a one dimensional case to a three dimensional case for the MSD method, and the evaluation of the algorithm using a massively parallel computer with distribuled memory(AP1000).

4401-4420hit(4570hit)