The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] SCE(344hit)

241-260hit(344hit)

  • Intra- and Inter-Vehicle Communication Network Using Low-Cost POF Links

    Nobuhiro FUJIMOTO  Masayoshi MORIYA  Atsuo ISHIZUKA  Masami GOTO  

     
    PAPER

      Vol:
    E85-D No:11
      Page(s):
    1839-1850

    Intelligent transport systems (ITS) are promising systems to give excellent solutions for many problems that we face in transport today. Not only road-to-vehicle communications but also inter-vehicle communications in ITS are expected to become popular in the future. On the other hand, an intra-vehicle communication network should be supported by multimedia information according to the explosive expansion of the Internet use and the like. An inexpensive transmission medium and transceiver becomes indispensable in such in-vehicle local area network (LAN) for multimedia information as these must handle full-motion video signals, without any electromagnetic interference. We have proposed on-board network architecture based on optical P1394b to realize effective inter-vehicle communications and enable all equipment which freely add and remove to the intra-vehicle network. And according to the proposed architecture, we have developed a 500-Mbit/s low-cost optical transceiver for the intra- and inter-vehicle communication network using a commercially available plastic clad fiber. An LD for the compact disk drive and a large area photodiode were adopted as low-cost and high-speed optical devices, and a logic direct driving type simple circuit having temperature compensation function was developed. Simple assembly technologies such as plastic molding and optical element press-fitting were also developed for mounting to reduce assembly cost. The total cost of the fabricated optical transceiver can be reduced less than 2/3, comparing with that of conventional one. We have performed transmission experiments and vibration tests using our optical transceivers that are mounted in on-board elements and connected to the on-board network, and have confirmed these stable operations. Experimental results show our proposed architecture and fabricated optical transceiver can play a key role in the intra- and inter-vehicle communication network.

  • Visible Electroluminescence from MOS Capacitors with Si-Implanted SiO2

    Toshihiro MATSUDA  Masaharu KAWABE  Hideyuki IWATA  Takashi OHZONE  

     
    PAPER-EL Displays

      Vol:
    E85-C No:11
      Page(s):
    1895-1904

    Electroluminescence (EL) under alternating-current (ac) operation is first reported for n+-polysilicon/SiO2/p-Si MOS capacitors with 50 nm Si-implanted SiO2. Visible EL can be observed with the naked eye in the dark. The ac operation by pulse-wave distinctly enhances the EL intensity and its lifetime. The pulse frequency affects the EL spectrum and thus the EL color. A model of EL mechanism is proposed for the Si-implanted MOS EL device, which has a possibility of visible light emitting device.

  • High-Luminance EL Devices Using Y2GeO5 Phosphor Thin Films Prepared by Magnetron Sputtering

    Tadatsugu MINAMI  Youhei KOBAYASHI  Toshihiro MIYATA  Masashi YAMAZAKI  

     
    PAPER-EL Displays

      Vol:
    E85-C No:11
      Page(s):
    1905-1910

    Thin-film electroluminescent (TFEL) devices have been newly developed using Y2GeO5 oxide phosphor thin films prepared by r.f. magnetron sputtering. Multicolor emissions were observed in TFEL devices fabricated using various impurity-activated Y2GeO5 phosphor thin films. A high-luminance TFEL device was fabricated using a Y2GeO5:Mn thin film prepared with a Mn content of 2 at.% and postannealed at 1020: luminances of 414 and 3020 cd/m2 and luminous efficiencies of 6.7 and 0.93 lm/W for yellow emission when driven at 60 Hz and 1 kHz, respectively. Newly developed oxide Y2GeO5:Mn phosphors are very promising for use as the thin-film emitting layer of TFEL devices.

  • Polyhedral Description of Panoramic Range Data by Stable Plane Extraction

    Caihua WANG  Hideki TANAHASHI  Hidekazu HIRAYU  Yoshinori NIWA  Kazuhiko YAMAMOTO  

     
    PAPER-Image Processing, Image Pattern Recognition

      Vol:
    E85-D No:9
      Page(s):
    1399-1408

    In this paper, we describe a novel technique to extract a polyhedral description from panoramic range data of a scene taken by a panoramic laser range finder. First, we introduce a reasonable noise model of the range data acquired with a laser radar range finder, and derive a simple and efficient approximate solution of the optimal fitting of a local plane in the range data under the assumed noise model. Then, we compute the local surface normals using the proposed method and extract stable planar regions from the range data by using both the distribution information of local surface normals and their spatial information in the range image. Finally, we describe a method which builds a polyhedral description of the scene using the extracted stable planar regions of the panoramic range data with 360 field of view in a polar coordinate system. Experimental results on complex real range data show the effectiveness of the proposed method.

  • A Self-Learning Analog Neural Processor

    Gian Marco BO  Daniele D. CAVIGLIA  Maurizio VALLE  

     
    PAPER-Neural Networks and Bioengineering

      Vol:
    E85-A No:9
      Page(s):
    2149-2158

    In this paper we present the analog architecture and the implementation of an on-chip learning Multi Layer Perceptron network. The learning algorithm is based on Back Propagation but it exhibits increased capabilities due to local learning rate management. A prototype chip (SLANP, Self-Learning Neural Processor) has been designed and fabricated in a CMOS 0.7 µm minimum channel length technology. We report the experimental results that confirm the functionality of the chip and the soundness of the approach. The SLANP performance compare favourably with those reported in the literature.

  • A Higher Order Generalization of an Alias-Free Discrete Time-Frequency Analysis

    Hiroshi HASEGAWA  Yasuhiro MIKI  Isao YAMADA  Kohichi SAKANIWA  

     
    PAPER-Theory of Signals

      Vol:
    E85-A No:8
      Page(s):
    1774-1780

    In this paper, we propose a novel higher order time-frequency distribution (GDH) for a discrete time signal. This distribution is defined over the original discrete time-frequency grids through a delicate discretization of an equivalent expression of a higher order distribution, for a continuous time signal, in [4]. We also present a constructive design method, for the kernel of the GDH, by which the distribution satisfies (i) the alias free condition as well as (ii) the marginal conditions. Numerical examples show that the proposed distributions reasonably suppress the artifacts which are observed severely in the Wigner distribution and its simple higher order generalization.

  • A Single-Chip 2.4-GHz RF Transceiver LSI with a Wide-Input-Range Frequency Discriminator

    Hiroshi KOMURASAKI  Hisayasu SATO  Masayoshi ONO  Ryoji HAYASHI  Takeo EBANA  Harunobu TAKEDA  Kohji TAKAHASHI  Yutaka HAYASHI  Tetsuya IGA  Kohichi HASEGAWA  Takahiro MIKI  

     
    PAPER

      Vol:
    E85-C No:7
      Page(s):
    1419-1427

    This paper describes a single-chip RF transce-iver LSI for 2.4-GHz-band Bluetooth applications. This chip uses a 0.5 µm BiCMOS process, which provides 23 GHz fT. The LSI consists of almost all the required RF and IF building blocks--a power amplifier (PA), a low noise amplifier (LNA), an image rejection mixer (IRM), channel-selection filters, a limiter, a received signal strength indicator (RSSI), a frequency discriminator, a voltage controlled oscillator (VCO), and a phase-locked loop (PLL) synthesizer. The transceiver consumes 34.4 mA in TX mode (PA, VCO, PLL) and 44.0 mA in RX mode (LNA, IRM, channel-selection filters, limiter, RSSI, frequency discriminator, VCO, PLL). Direct-up conversion with a frequency doubler is used for the TX architecture. In order to avoid the VCO pulling, we used a 1.2 GHz VCO with the frequency doubler. In the receiver section, a low-IF single conversion RX architecture is employed for the integration of the channel-selection filters. The transceiver has a proposed linear frequency discriminator with a wide input range. The wide input-frequency range discriminator is required to realize the lower IF RX architecture because of the higher ratio of frequency deviation to the center IF frequency. The discriminator is the delay line type, and consists of a mixer and a delay line circuit with a locked loop. The delay line connects to one input terminal of the mixer. By using the delay locked at one fourth of the period of the IF frequency, a quadrature phase shift IF signal is applied to the mixer input terminal. For the frequency discriminator, the DC output voltage changes in proportion to the input frequency and a wide input range is achieved. This RF transceiver sufficiently satisfies all the target specifications for short-range Bluetooth applications. By using this chip, a -80 dBm sensitivity is obtained for the 10-3 BER, and the transceiver can deliver an output power of over 0.0 dBm.

  • Three-Dimensional MMIC Technology on Silicon: Review and Recent Advances

    Belinda PIERNAS  Kenjiro NISHIKAWA  Kenji KAMOGAWA  Ichihiko TOYODA  

     
    INVITED PAPER

      Vol:
    E85-C No:7
      Page(s):
    1394-1403

    This paper reviews the advantages of the silicon three-dimensional MMIC technology such as low loss transmission lines, high integration level, and high Q-factor on-chip inductors. Coupled to the masterslice concept, this technology also offers simple design procedure, short turn-around-time, low cost, and potential integration with LSI circuits. A K-band amplifier and an up-converter demonstrate the high frequency operation and low-power consumption benefits of the Si 3-D MMIC technology. A C-band Si-bipolar single-chip transceiver is proposed to illustrate the high integration level offered by the masterslice concept. Finally, the recent advances we achieved toward high Q-factor on-chip inductors provide the design of the S-band low noise amplifier presented in this paper.

  • Characteristics of MOSFET with Non-overlapped Source-Drain to Gate

    Hyunjin LEE  Sung-il CHANG  Jongho LEE  Hyungcheol SHIN  

     
    PAPER

      Vol:
    E85-C No:5
      Page(s):
    1079-1085

    A MOSFET structure with non-overlapped source-drain to gate region is proposed to overcome the challenges in sub-0.1 µm CMOS device. Key device characteristics were investigated by extensive simulation study. Fringing gate electric field through the dielectric spacer induces inversion layer in the non-overlap region to act as extended S/D region. Electrons were induced reasonably under the spacer. Internal physics and speed characteristics were studied with the non-overlap distance. The proposed structure had good subthreshold slope and DIBL characteristics compared to those of overlapped structure.

  • A Method of Learning for Multi-Layer Networks

    Zheng TANG  Xu Gang WANG  

     
    LETTER-Neural Networks and Bioengineering

      Vol:
    E85-A No:2
      Page(s):
    522-525

    A method of learning for multi-layer artificial neural networks is proposed. The learning model is designed to provide an effective means of escape from the Backpropagation local minima. The system is shown to escape from the Backpropagation local minima and be of much faster convergence than simulated annealing techniques by simulations on the exclusive-or problem and the Arabic numerals recognition problem.

  • Development of 40 Gbit/s Transceiver Using a Novel OTDM MUX Module, and Stable Transmission with Carrier-Suppressed RZ Format

    Yoshiharu FUJISAKU  Masatoshi KAGAWA  Toshio NAKAMURA  Hitoshi MURAI  Hiromi T. YAMADA  Shigeru TAKASAKI  Kozo FUJII  

     
    PAPER

      Vol:
    E85-B No:2
      Page(s):
    416-422

    40 Gbit/s optical transceiver using a novel OTDM MUX module has been developed. OTDM (Optical-Time-Division-Multiplexing) MUX module, the core component of the transmitter, consisted of a optical splitter, two electro-absorption (EA) modulators and a combiner in a sealed small package. As the split optical paths run through the "air" in the module, greatly stable optical phase relation between bit-interleaved pulses could be maintained. With the OTDM MUX module, the selection between conventional Return-to-Zero (conventional-RZ) format and carrier-suppressed RZ (CS-RZ) format is performed by slightly changing the wavelength of laser-diode. In a receiver, 40 Gbit/s optical data train is optically demultiplexed to 10 Gbit/s optical train, before detected by the O/E receiver for 10 Gbit/s RZ format. Back-to-back MUX-DEMUX evaluations of the transceiver exhibited good sensitivities of under -30 dBm measured at 40 Gbit/s optical input to achieve the bit-error-rate (BER) of 10-9. Another unique feature of the transceiver system was a spectrum switch capability. The stable RZ and CS-RZ multiplexing operation was confirmed in the experiment. Once we adjust the 40 Gbit/s optical signal to CS-RZ format, the optical spectrum would maintain its CS spectrum shape for a long time to the benefit of the stable long transmission characteristics. In the recirculating loop experiment employing the OTDM MUX transceiver, the larger power margin was successfully observed with CS-RZ format than with conventional-RZ format, indicating that proper encoding of conventional-RZ and CS-RZ was realized with this prototype transceiver. In the case of CS-RZ format, the error free (BER < 10-9) transmission over 720 km was achieved with the long repeater amplifier span of 120 km.

  • A Probabilistic Approach to Plane Extraction and Polyhedral Approximation of Range Data

    Caihua WANG  Hideki TANAHASHI  Hidekazu HIRAYU  Yoshinori NIWA  Kazuhiko YAMAMOTO  

     
    PAPER-Image Processing, Image Pattern Recognition

      Vol:
    E85-D No:2
      Page(s):
    402-410

    In this paper, we propose a probabilistic approach to derive an approximate polyhedral description from range data. We first compare several least-squares-based methods for estimation of local normal vectors and select the most robust one based on a reasonable noise model of the range data. Second, we extract the stable planar regions from the range data by examining the distributions of the local normal vectors together with their spatial information in the 2D range image. Instead of segmenting the range data completely, we use only the geometries of the extracted stable planar regions to derive a polyhedral description of the range data. The curved surfaces in the range data are approximated by their extracted plane patches. With a probabilistic approach, the proposed method can be expected to be robust against the noise. Experimental results on real range data from different sources show the effectiveness of the proposed method.

  • A Near-Optimum Parallel Algorithm for Bipartite Subgraph Problem Using the Hopfield Neural Network Learning

    Rong-Long WANG  Zheng TANG  Qi-Ping CAO  

     
    PAPER-Neural Networks and Bioengineering

      Vol:
    E85-A No:2
      Page(s):
    497-504

    A near-optimum parallel algorithm for bipartite subgraph problem using gradient ascent learning algorithm of the Hopfield neural networks is presented. This parallel algorithm, uses the Hopfield neural network updating to get a near-maximum bipartite subgraph and then performs gradient ascent learning on the Hopfield network to help the network escape from the state of the near-maximum bipartite subgraph until the state of the maximum bipartite subgraph or better one is obtained. A large number of instances have been simulated to verify the proposed algorithm, with the simulation result showing that our algorithm finds the solution quality is superior to that of best existing parallel algorithm. We also test the proposed algorithm on maximum cut problem. The simulation results also show the effectiveness of this algorithm.

  • A Multi-Resolution Image Understanding System Based on Multi-Agent Architecture for High-Resolution Images

    Keiji YANAI  Koichiro DEGUCHI  

     
    PAPER

      Vol:
    E84-D No:12
      Page(s):
    1642-1650

    Recently a high-resolution image that has more than one million pixels is available easily. However, such an image requires much processing time and memory for an image understanding system. In this paper, we propose an integrated image understanding system of multi-resolution analysis and multi-agent-based architecture for high-resolution images. The system we propose in this paper has capability to treat with a high-resolution image effectively without much extra cost. We implemented an experimental system for images of indoor scenes.

  • Coordinate Transformation by Nearest Neighbor Interpolation for ISAR Fixed Scene Imaging

    Koichi SASAKI  Masaru SHIMIZU  Yasuo WATANABE  

     
    PAPER

      Vol:
    E84-C No:12
      Page(s):
    1905-1909

    The reflection signal in the inverse synthetic aperture radar is measured in the polar coordinate defined by the object rotation angle and the frequency. The reconstruction of fixed scene images requires the coordinate transformation of the polar format data into the rectangular spatial frequency domain, which is then processed by the inverse Fourier transform. In this paper a fast and flexible method of coordinate transformation based on the nearest neighbor interpolation utilizing the Delauney triangulation is at first presented. Then, the induced errors in the transformed rectangular spatial frequency data and the resultant fixed scene images are investigated by simulation under the uniform plane wave transmit-receive mode over the swept frequency 120-160 GHz, and the results which demonstrate the validity of the current coordinate transformation are presented.

  • HBT Collector Characterization by the Spectral Photocurrent Technique

    Fritz SCHUERMEYER  Peter J. ZAMPARDI  Sharon FITZSIMMONS  Roger E. WELSER  Noren PAN  

     
    PAPER-III-V HBTs

      Vol:
    E84-C No:10
      Page(s):
    1383-1388

    Photoelectric techniques, such as photoluminescence are commonly used to evaluate and qualify heterostructure materials. These studies provide invaluable information on the energy configuration of these devices. In this paper, we extend photoelectric techniques to the evaluation of fully fabricated HBTs. We describe photoconduction measurements performed on the base/collector junctions in GaAs based HBTs. The devices studied contained a window in the emitter metal and monochromatic, chopped light was focused through a microscope into the window. The measurements are performed on wafer at room temperature. The spectral characteristic of the photocurrent provides information on the material and allows the determination of the source of the measured photocurrent. The dependence of the photocurrent on the junction bias allows the profiling of the junction. Three different collector structures were investigated, containing GaAs, AlGaAs, and InGaP. The effects of electron and hole barriers are evaluated. The information obtained allows for the design of improved HBTs.

  • A Cumulative Distribution Function of Edge Direction for Road-Lane Detection

    Joon-Woong LEE  Un-Kun YI  Kwang-Ryul BAEK  

     
    PAPER-Pattern Recognition

      Vol:
    E84-D No:9
      Page(s):
    1206-1216

    This paper describes a cumulative distribution function (CDF) of edge direction for detecting road lanes. Based on the assumptions that there are no abrupt changes in the direction and location of road lanes and that the intensity of lane boundaries differs from that of the background, the CDF is formulated, which accumulates the edge magnitude for edge directions. The CDF has distinctive peak points at the vicinity of lane directions due to the directional and the positional continuities of a lane. To obtain lane-related information, we construct a scatter diagram by collecting edge pixels, of which the direction corresponds to the peak point of the CDF, then perform the principal axis-based line fitting for the scatter diagram. Because noises can cause many similar features appear or disappear in an image, to prevent false alarms or miss detection, a recursive estimator of the CDF was introduced, and also a scene understanding index (SUI) was formulated by the statistical parameters of the CDF. The proposed algorithm has been implemented in real time on video data obtained from a test vehicle driven on a typical highway.

  • A Simplified Process Modeling for Reverse Short Channel Effect of Threshold Voltage of MOSFET

    Hirokazu HAYASHI  Noriyuki MIURA  Hirotaka KOMATSUBARA  Koichi FUKUDA  

     
    PAPER-Semiconductor Materials and Devices

      Vol:
    E84-C No:9
      Page(s):
    1234-1239

    We propose an effective model that can reproduce the reverse short channel effect (RSCE) of the threshold voltage (Vth) of MOSFETs using a conventional process simulator that solves one equation for each impurity. The proposed model is developed for local modeling which is effective within the limited process conditions. The proposed model involves the physics in which RSCE is due to the pile up of channel dopant at the Si/SiO2 interface. We also report the application to actual device design using our model. The calculation cost is much lower than for a pair diffusion model, and device design in an acceptable turn around time is possible.

  • Multi-Level QAM Transceivers with Adaptive Power Control in Fixed Wireless Channels

    Seong-Choon LEE  Yong-Hwan LEE  

     
    PAPER-Terrestrial Radio Communications

      Vol:
    E84-B No:8
      Page(s):
    2219-2226

    This paper considers the design of quadrature amplitude modulation (QAM) transceivers for fixed wireless communications. We propose the use of power control in the QAM transmitter (Tx) to obtain BER performance robust to fading. The gain of the Tx is adaptively adjusted to keep the power of the received signal nearly constant despite of the short term fading and the second multipath. The BER performance of the proposed scheme is analytically evaluated in fixed wireless channels with flat fading and frequency selective fading. Analytic and simulation results show that the use of power control in the Tx can provide the BER performance only about 1 dB inferior to that in additive white Gaussian noise (AWGN) channel.

  • A Hopfield Network Learning Algorithm for Graph Planarization

    Zheng TANG  Rong Long WANG  Qi Ping CAO  

     
    LETTER-Neural Networks and Bioengineering

      Vol:
    E84-A No:7
      Page(s):
    1799-1802

    A gradient ascent learning algorithm of the Hopfield neural networks for graph planarization is presented. This learning algorithm uses the Hopfield neural network to get a near-maximal planar subgraph, and increases the energy by modifying parameters in a gradient ascent direction to help the network escape from the state of the near-maximal planar subgraph to the state of the maximal planar subgraph or better one. The proposed algorithm is applied to several graphs up to 150 vertices and 1064 edges. The performance of our algorithm is compared with that of Takefuji/Lee's method. Simulation results show that the proposed algorithm is much better than Takefuji/Lee's method in terms of the solution quality for every tested graph.

241-260hit(344hit)