The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] SCE(344hit)

141-160hit(344hit)

  • Recent Advances in Ultra-High-Speed Waveguide Photodiodes for Optical Communication Systems Open Access

    Kikuo MAKITA  Kazuhiro SHIBA  Takeshi NAKATA  Emiko MIZUKI  Sawaki WATANABE  

     
    INVITED PAPER

      Vol:
    E92-C No:7
      Page(s):
    922-928

    This paper describes the recent advances in semiconductor photodiodes for use in ultra-high-speed optical systems. We developed two types of waveguide photodiodes (WG-PD) -- an evanescently coupled waveguide photodiode (EC-WG-PD) and a separated-absorption-and-multiplication waveguide avalanche photodiode (WG-APD). The EC-WG-PD is very robust under high optical input operation because of its distribution of photo current density along the light propagation. The EC-WG-PD simultaneously exhibited a high external quantum efficiency of 70% for both 1310 and 1550 nm, and a wide bandwidth of more than 40 GHz. The WG-APD, on the other hand, has a wide bandwidth of 36.5 GHz and a gain-bandwidth product of 170 GHz as a result of its small waveguide mesa structure and a thin multiplication layer. Record high receiver sensitivity of -19.6 dBm at 40 Gbps was achieved. Additionally, a monolithically integrated dual EC-WG-PD for differential phase shift-keying (DPSK) systems was developed. Each PD has equivalent characteristics with 3-dB-down bandwidth of more than 40 GHz and external quantum efficiency of 70% at 1550 nm.

  • Experimental Evaluation of Dynamic Power Supply Noise and Logical Failures in Microprocessor Operations

    Mitsuya FUKAZAWA  Masanori KURIMOTO  Rei AKIYAMA  Hidehiro TAKATA  Makoto NAGATA  

     
    PAPER

      Vol:
    E92-C No:4
      Page(s):
    475-482

    Logical operations in CMOS digital integration are highly prone to fail as the amount of power supply (PS) drop approaches to failure threshold. PS voltage variation is characterized by built-in noise monitors in a 32-bit microprocessor of 90-nm CMOS technology, and related with operation failures by instruction-level programming for logical failure analysis. Combination of voltage drop size and activated logic path determines failure sensitivity and class of failures. Experimental observation as well as simplified simulation is applied for the detailed understanding of the impact of PS noise on logical operations of digital integrated circuits.

  • Category Constrained Learning Model for Scene Classification

    Yingjun TANG  De XU  Guanghua GU  Shuoyan LIU  

     
    LETTER-Image Recognition, Computer Vision

      Vol:
    E92-D No:2
      Page(s):
    357-360

    We present a novel model, named Category Constraint-Latent Dirichlet Allocation (CC-LDA), to learn and recognize natural scene category. Previous work had to resort to additional classifier after obtaining image topic representation. Our model puts the category information in topic inference, so every category is represented in a different topics simplex and topic size, which is consistent with human cognitive habit. The significant feature in our model is that it can do discrimination without combined additional classifier, during the same time of getting topic representation. We investigate the classification performance with variable scene category tasks. The experiments have demonstrated that our learning model can get better performance with less training data.

  • Joint Stream-Wise THP Transceiver Design for the Multiuser MIMO Downlink

    Wei MIAO  Xiang CHEN  Ming ZHAO  Shidong ZHOU  Jing WANG  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E92-B No:1
      Page(s):
    209-218

    This paper addresses the problem of joint transceiver design for Tomlinson-Harashima Precoding (THP) in the multiuser multiple-input-multiple-output (MIMO) downlink under both perfect and imperfect channel state information at the transmitter (CSIT). For the case of perfect CSIT, we differ from the previous work by performing stream-wise (both inter-user and intra-user) interference pre-cancelation at the transmitter. A minimum total mean square error (MT-MSE) criterion is used to formulate our optimization problem. By some convex analysis of the problem, we obtain the necessary conditions for the optimal solution. An iterative algorithm is proposed to handle this problem and its convergence is proved. Then we extend our designed algorithm to the robust version by minimizing the conditional expectation of the T-MSE under imperfect CSIT. Simulation results are given to verify the efficacy of our proposed schemes and to show their superiorities over existing MMSE-based THP schemes.

  • Organic Photodetectors Using Triplet Materials Doped in Polyalkylfluorene

    Tatsunari HAMASAKI  Taichiro MORIMUNE  Hirotake KAJII  Yutaka OHMORI  

     
    PAPER-Materials & Devices

      Vol:
    E91-C No:12
      Page(s):
    1859-1862

    The characteristics of violet-sensitive organic photodetectors (OPDs) utilizing polyalkylfluorene and triplet materials have been studied as a host and a dopant material, respectively. For the photo absorption layer, poly(9,9-dioctylfluorene) [PFO] and a phosphorescent iridium complex (Iridium (III) bis(2-(4,6-difluorophenyl)pyridinato-N,C2) [FIrpic] or Iridium (III) bis(2-(2'-benzothienyl)pyridinato-N,C3')(acetyl-acetonate) [(btp)2Ir(acac)]) were used as a host and a dopant material, respectively. PFO: (btp)2Ir(acac) device showed less photocurrent than PFO device because (btp)2Ir(acac) enhances recombination of the photo generated carriers in the photo absorption layer. On the other hand, PFO : FIrpic device showed larger photocurrent than PFO device due to triplet energy transfer from FIrpic to PFO. A cutoff frequency of 20 MHz was observed using a sinusoidal modulated violet laser light illumination under the reverse bias of 8 V.

  • Evanescent-Field Modulation of Amplified Spontaneous Emissions from π-Conjugate Polymer Film by a One-Dimensional Photonic Crystal

    Yasushi KAMIYAMA  Akihiro TOMIOKA  Tomochika MIZUTANI  Mutsuhito YAMAZAKI  Kouzirou MORIMOTO  

     
    PAPER-Materials & Devices

      Vol:
    E91-C No:12
      Page(s):
    1869-1875

    One-dimensional photonic crystal (PC) with alternating layers of TiO2 and SiO2 was fabricated with spin coating and low temperature baking, resulting in a successful tuning of the PC stop band so as to block the amplified spontaneous emission (ASE) of a π-conjugate polymer film. Single PC as a substrate, not a cavity with two PC's, of the polymer film was sufficient to shift the tangential ASE to the energy at PC stop band edge, indicating that the tangential ASE propagating along the interface was modulated by its evanescent-field tail in the PC, which opens the new pathway for low-threshold coherent luminescence from an ultrathin π-conjugate polymer film with ultimate mode volume.

  • Improved Estimation of the Number of Competing Stations Using Scaled Unscented Filter in an IEEE 802.11 Network

    Jang Sub KIM  Ho Jin SHIN  Dong Ryeol SHIN  

     
    PAPER-Terrestrial Radio Communications

      Vol:
    E91-B No:11
      Page(s):
    3688-3694

    In this paper, a new methodology to estimate the number of competing stations in an IEEE 802.11 network, is proposed. Due to the nonlinear nature of the measurement model, an iterative nonlinear filtering algorithm, called the Scaled Unscented Filter (SUF), is employed. The SUF can provide a superior alternative to nonlinear filtering than the conventional Extended Kalman Filter (EKF), since it avoids errors associated with linearization. This approach demonstrates both high accuracy in addition to prompt reactivity to changes in the network occupancy status. In particular, the proposed algorithm shows superior performance in non saturated conditions when compared to the EKF. Numerical results demonstrate that the proposed algorithm provides a more viable method for estimation of the number of competing stations in an IEEE 802.11 network, than estimators based on the EKF.

  • Research of Practical Indoor Guidance Platform Using Fluorescent Light Communication

    Xiaohan LIU  Hideo MAKINO  Suguru KOBAYASHI  Yoshinobu MAEDA  

     
    PAPER

      Vol:
    E91-B No:11
      Page(s):
    3507-3515

    This article presents an indoor positioning and communication platform, using fluorescent lights. We set up a practical implementation of a VLC (Visible Light Communication) system in a University building. To finalize this work, it is important that we analyze the properties of the reception signal, especially the length of the data string that can be received at different walking speed. In this paper, we present a model and a series of formulae for analyzing the relationship between positioning signal availability and other important parameters, such as sensor angle, walking speed, data transmission rate, etc. We report a series of real-life experiments using VLC system and compare the results with those generated by the formula. The outcome is an improved design for determination of the reception area with more than 97% accurate signals, and an optimal transmission data length, and transmission rate.

  • Robust Transceiver Design for Multiuser MIMO Downlink with Channel Uncertainties

    Wei MIAO  Yunzhou LI  Xiang CHEN  Shidong ZHOU  Jing WANG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E91-B No:10
      Page(s):
    3351-3354

    This letter addresses the problem of robust transceiver design for the multiuser multiple-input-multiple-output (MIMO) downlink where the channel state information at the base station (BS) is imperfect. A stochastic approach which minimizes the expectation of the total mean square error (MSE) of the downlink conditioned on the channel estimates under a total transmit power constraint is adopted. The iterative algorithm reported in [2] is improved to handle the proposed robust optimization problem. Simulation results show that our proposed robust scheme effectively reduces the performance loss due to channel uncertainties and outperforms existing methods, especially when the channel errors of the users are different.

  • HMM-Based Mask Estimation for a Speech Recognition Front-End Using Computational Auditory Scene Analysis

    Ji Hun PARK  Jae Sam YOON  Hong Kook KIM  

     
    LETTER-Speech and Hearing

      Vol:
    E91-D No:9
      Page(s):
    2360-2364

    In this paper, we propose a new mask estimation method for the computational auditory scene analysis (CASA) of speech using two microphones. The proposed method is based on a hidden Markov model (HMM) in order to incorporate an observation that the mask information should be correlated over contiguous analysis frames. In other words, HMM is used to estimate the mask information represented as the interaural time difference (ITD) and the interaural level difference (ILD) of two channel signals, and the estimated mask information is finally employed in the separation of desired speech from noisy speech. To show the effectiveness of the proposed mask estimation, we then compare the performance of the proposed method with that of a Gaussian kernel-based estimation method in terms of the performance of speech recognition. As a result, the proposed HMM-based mask estimation method provided an average word error rate reduction of 61.4% when compared with the Gaussian kernel-based mask estimation method.

  • Sensitivity Analysis and Optimization Algorithm --- Based on Nonlinear Programming ---

    Masayoshi ODA  Yoshihiro YAMAGAMI  Junji KAWATA  Yoshifumi NISHIO  Akio USHIDA  

     
    PAPER-Analysis, Modelng and Simulation

      Vol:
    E91-A No:9
      Page(s):
    2426-2434

    We propose here a fully Spice-oriented design algorithm of op-amps for attaining the maximum gains under low power consumptions and assigned slew-rates. Our optimization algorithm is based on a well-known steepest descent method combining with nonlinear programming. The algorithm is realized by equivalent RC circuits with ABMs (analog behavior models) of Spice. The gradient direction is decided by the analysis of sensitivity circuits. The optimum parameters can be found at the equilibrium point in the transient response of the RC circuit. Although the optimization time is much faster than the other design tools, the results might be rough because of the simple transistor models. If much better parameter values are required, they can be improved with Spice simulator and/or other tools.

  • Adaptively Combining Local with Global Information for Natural Scenes Categorization

    Shuoyan LIU  De XU  Xu YANG  

     
    LETTER-Image Recognition, Computer Vision

      Vol:
    E91-D No:7
      Page(s):
    2087-2090

    This paper proposes the Extended Bag-of-Visterms (EBOV) to represent semantic scenes. In previous methods, most representations are bag-of-visterms (BOV), where visterms referred to the quantized local texture information. Our new representation is built by introducing global texture information to extend standard bag-of-visterms. In particular we apply the adaptive weight to fuse the local and global information together in order to provide a better visterm representation. Given these representations, scene classification can be performed by pLSA (probabilistic Latent Semantic Analysis) model. The experiment results show that the appropriate use of global information improves the performance of scene classification, as compared with BOV representation that only takes the local information into account.

  • All CMOS Low-Power Wide-Gain Range Variable Gain Amplifiers

    Quoc-Hoang DUONG  Chang-Wan KIM  Sang-Gug LEE  

     
    PAPER-Electronic Circuits

      Vol:
    E91-C No:5
      Page(s):
    788-797

    Two variable gain amplifiers (VGAs) that adopt new approximated exponential equations are proposed in this paper. The dB-linear range of the proposed VGAs is extended more than what the approximated exponential equations predict by a bias circuit technique that adopts negative feedback. The proposed VGAs feature wide gain variation, low-power, high linearity, wide control signal range, and small chip size. One of the proposed VGAs is fabricated in 0.18 µm CMOS technology and measurements show a gain variation of 83 dB (-3647 dB) with a gain error of less than 2 dB, and P1 dB/IIP3 from -55/8 to -20/20.5 dBm, while consuming an average current of 3.4 mA from a 1.8 V supply; the chip occupies 0.4 mm2. The other VGA is simulated in 0.18 µm CMOS technology and simulations show a gain variation of 91 dB (-4150 dB), and P1 dB/IIP3 from -50/-25 to -33/0 dBm, while consuming an average current of 1.5 mA from a 1.8 V supply.

  • A 90 dB 1.32 mW 1.2 V 0.13 mm2 Two-Stage Variable Gain Amplifier in 0.18 µm CMOS

    Quoc-Hoang DUONG  Jeong-Seon LEE  Sang-Hyun MIN  Joong-Jin KIM  Sang-Gug LEE  

     
    LETTER-Electronic Circuits

      Vol:
    E91-C No:5
      Page(s):
    806-808

    An all CMOS variable gain amplifier (VGA) which features wide dB-linear gain range per stage (45 dB), low power consumption (1.32 mW), small chip size (0.13 mm2), and low supply voltage (1.2 V) is described. The dB-linear range is extended by reducing the supply voltage of the conventional V-to-I converter. The two-stage VGA implemented in 0.18 µm CMOS offers 90 dB of gain variation, 3 dB bandwidth of greater than 21 MHz, and max/min input IP3 and P1 dB, respectively, of -5/-42 and -12/-50 dBm.

  • Characterization of 2-bit Recessed Channel Memory with Lifted-Charge Trapping Node (L-CTN) Scheme

    Jang Gn YUN  Il Han PARK  Seongjae CHO  Jung Hoon LEE  Doo-Hyun KIM  Gil Sung LEE  Yoon KIM  Jong Duk LEE  Byung-Gook PARK  

     
    PAPER

      Vol:
    E91-C No:5
      Page(s):
    742-746

    In this paper, characteristics of the 2-bit recessed channel memory with lifted-charge trapping nodes are investigated. The length between the charge trapping nodes through channel, which is defined as the effective memory node length (Meff), is extended by lifting up them. The dependence of VTH window and short channel effect (SCE) on the recessed depth is analyzed. Improvement of short channel effect is achieved because the recessed channel structure increases the effective channel length (Leff). Moreover, this device shows highly scalable memory characteristics without suffering from the bottom-side effect (BSE).

  • A Generation Method of Exceptional Scenarios from a Normal Scenario

    Atsushi OHNISHI  

     
    PAPER-Software Engineering

      Vol:
    E91-D No:4
      Page(s):
    881-887

    This paper proposes a method to generate exceptional scenarios from a normal scenario written with a scenario language. This method includes (1) generation of exceptional plans and (2) generation of exceptional scenario by a user's selection of these plans. The proposed method enables users to decrease the omission of the possible exceptional scenarios in the early stages of development. The method will be illustrated with some examples.

  • Enabling Light Emission from Si Based MOSLED on Surface Nano-Roughened Si Substrate

    Gong-Ru LIN  

     
    INVITED PAPER

      Vol:
    E91-C No:2
      Page(s):
    173-180

    The historical review of Taiwan's researching activities on the features of PECVD grown SiOx are also included to realize the performance of Si nanocrystal based MOSLED made by such a Si-rich SiOx film with embedded Si nanocrystals on conventional Si substrate. A surface nano-roughened Si substrate with interfacial Si nano-pyramids at SiOx/Si interface are also reviewed, which provide the capabilities of enhancing the surface roughness induced total-internal-reflection relaxation and the Fowler-Nordheim tunneling based carrier injection. These structures enable the light emission and extraction from a metal-SiOx-Si MOSLED.

  • An Edge-Preserving Super-Precision for Simultaneous Enhancement of Spacial and Grayscale Resolutions

    Hiroshi HASEGAWA  Toshinori OHTSUKA  Isao YAMADA  Kohichi SAKANIWA  

     
    PAPER-Image

      Vol:
    E91-A No:2
      Page(s):
    673-681

    In this paper, we propose a method that recovers a smooth high-resolution image from several blurred and roughly quantized low-resolution images. For compensation of the quantization effect we introduce measurements of smoothness, Huber function that is originally used for suppression of block noises in a JPEG compressed image [Schultz & Stevenson '94] and a smoothed version of total variation. With a simple operator that approximates the convex projection onto constraint set defined for each quantized image [Hasegawa et al. '05], we propose a method that minimizes these cost functions, which are smooth convex functions, over the intersection of all constraint sets, i.e. the set of all images satisfying all quantization constraints simultaneously, by using hybrid steepest descent method [Yamada & Ogura '04]. Finally in the numerical example we compare images derived by the proposed method, Projections Onto Convex Sets (POCS) based conventinal method, and generalized proposed method minimizing energy of output of Laplacian.

  • A Fully Integrated SoC with Digital MAC Processor and Transceiver for Ubiquitous Sensor Network at 868/915 MHz

    Dong-Sun KIM  Hae-Moon SEO  Seung-Yerl LEE  Yeon-Kug MOON  Byung-Soo KIM  Tae-Ho HWANG  Duck-Jin CHUNG  

     
    PAPER

      Vol:
    E90-B No:12
      Page(s):
    3336-3345

    A single-chip ubiquitous sensor network (USN) system-on-a-chip (SoC) for small program memory size and low power has been proposed and integrated in a 0.18-µm CMOS technology. Proposed single-chip USN SoC is mainly consists of radio for 868/915 MHz, analog building block, complete digital baseband physical layer (PHY) and media access control (MAC) functions. The transceiver's analog building block includes a low-noise amplifier, mixer, channel filter, receiver signal-strength indication, frequency synthesizer, voltage-controlled oscillator, and power amplifier. In addition, digital building block consists of differential binary phase-shift keying (DPSK) modulation, demodulation, carrier frequency offset compensation, auto-gain control, embedded 8-bit microcontroller, and digital MAC function. Digital MAC function supports 128 bit advanced encryption standard (AES), cyclic redundancy check (CRC), inter-symbol timing check, MAC frame control, and automatic retransmission. These digital MAC functions reduce the processing power requirements of embedded microcontroller and program memory size by up to 56%. The cascaded noise figure and sensitivity of the overall receiver are 9.5 dB and -99 dBm, respectively. The overall transmitter achieves less than 6.3% error vector magnitude (EVM). The current consumption is 14 mA for reception mode and 16 mA for transmission mode.

  • NRD-Guide Passive Components and Devices for Millimeter Wave Wireless Applications

    Tsukasa YONEYAMA  Hirokazu SAWADA  Takashi SHIMIZU  

     
    INVITED PAPER

      Vol:
    E90-C No:12
      Page(s):
    2170-2177

    Owing to simple structure, low cost and high performance, NRD-guide millimeter wave circuits have attracted much attention in recent years. In this paper, a variety of NRD-guide passive components are reviewed with emphasis on design techniques and performance estimation in the 60 GHz frequency band where the license-free advantage is available. The passive components to be discussed here include compact bends, wideband hybrid couplers, practical three-port junctions, versatile E-plane filters, and effective feeding structures for lens antennas. Some of them are employed to construct millimeter wave transceivers. Eye patterns observed at 1.5 Gbps confirm the potential ability of the fabricated NRD-guide transceivers for high bit-rate, wireless applications.

141-160hit(344hit)