The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] SCE(344hit)

161-180hit(344hit)

  • Hierarchical Decomposition of Depth Map Sequences for Representation of Three-Dimensional Dynamic Scenes

    Sung-Yeol KIM  Yo-Sung HO  

     
    PAPER-Image Processing and Video Processing

      Vol:
    E90-D No:11
      Page(s):
    1813-1820

    In this paper, we propose a new scheme to represent three-dimensional (3-D) dynamic scenes using a hierarchical decomposition of depth maps. In the hierarchical decomposition, we split a depth map into four types of images: regular mesh, boundary, feature point and number-of-layer (NOL) images. A regular mesh image is obtained by down-sampling a depth map. A boundary image is generated by gathering pixels of the depth map on the region of edges. For generating feature point images, we select pixels of the depth map on the region of no edges according to their influence on the shape of a 3-D surface, and convert the selected pixels into images. A NOL image includes structural information to manage the other three images. In order to render a frame of 3-D dynamic scenes, we first generate an initial surface utilizing the information of regular mesh, boundary and NOL images. Then, we enhance the initial surface by adding the depth information of feature point images. With the proposed scheme, we can represent consecutive 3-D scenes successfully within the framework of a multi-layer structure. Furthermore, we can compress the data of 3-D dynamic scenes represented by a mesh structure by a 2-D video coder.

  • A High-Performance Architecture of Motion Adaptive De-interlacing with Reliable Interfield Information

    Chung-chi LIN  Ming-hwa SHEU  Huann-keng CHIANG  Chih-Jen WEI  Chishyan LIAW  

     
    PAPER-Image

      Vol:
    E90-A No:11
      Page(s):
    2575-2583

    Scene changes occur frequently in film broadcasting, and tend to destabilize the performance with blurred, jagged, and artifacts effects when de-interlacing methods are utilized. This paper presents an efficient VLSI architecture of video de-interlacing with considering scene change to improve the quality of video results. This de-interlacing architecture contains three main parts. The first is scene change detection, which is designed based on examining the absolute pixel difference value of two adjacent even or odd fields. The second is background index mechanism for classifying motion and non-motion pixels of input field. The third component, spatial-temporal edge-based median filter, is used to deal with the interpolation for those motion pixels. Comparing with the existed de-interlacing approaches, our architecture design can significantly ameliorate the PSNRs of the video sequences with various scene changes; for other situations, it also maintains better performances. The proposed architecture has been implemented as a VLSI chip based on UMC 0.18-µm CMOS technology process. The total gate count is 30114 and its layout area is about 710 710-µm. The power consumption is 39.78 mW at working frequency 128.2 MHz, which is able to process de-interlacing for HDTV in real-time.

  • Confliction of the Convexity and Metric Properties in f-Divergences

    Mohammadali KHOSRAVIFARD  Dariush FOOLADIVANDA  T. Aaron GULLIVER  

     
    PAPER

      Vol:
    E90-A No:9
      Page(s):
    1848-1853

    We prove that the Variational distance (and its positive multiples) is the only f-divergence that satisfies both the identity of indiscernibles and the triangle inequality. Therefore it is the unique f-divergence which serves as a metric. This point is interpreted as a fundamental confliction of the convexity for f(x) with the metric properties for its associated f-divergence. Therefore, we relax the convexity of f(x) and replace it with other constraints to create new metrics.

  • A 5.8-GHz ETC Transceiver Using SiGe-BiCMOS

    Minoru NAGATA  Hideaki MASUOKA  Shin-ichi FUKASE  Makoto KIKUTA  Makoto MORITA  Nobuyuki ITOH  

     
    PAPER-Active Devices/Circuits

      Vol:
    E90-C No:9
      Page(s):
    1721-1728

    A fully integrated 5.8 GHz ETC transceiver LSI has been developed. The transceiver consists of LNA, down-conversion MIX, ASK detector, ASK modulator, DA VCO, and ΔΣ-fractional-N PLL. The features of the transceiver are integrated matching circuitry for LNA input and for DA output, ASK modulator with VGA for local signal control to avoid local leakage and to keep suitable modulation index, and LO circuitry consisting of ΔΣ-fractional-N PLL and interference-robust ∞-shape inductor VCO to diminish magnetic coupling from any other circuitry. Use of these techniques enabled realization of the input and output VSWR of less than 1.25, modulation index of over 95%, and enough qualified TX signals. This transceiver was manufactured by 1P3M SiGe-BiCMOS process with 47 GHz cut-off frequency.

  • Gauss-Newton Particle Filter

    Hui CAO  Noboru OHNISHI  Yoshinori TAKEUCHI  Tetsuya MATSUMOTO  Hiroaki KUDO  

     
    LETTER-Systems and Control

      Vol:
    E90-A No:6
      Page(s):
    1235-1239

    The extened Kalman filter (EKF) and unscented Kalman filter (UKF) have been successively applied in particle filter framework to generate proposal distributions, and shown significantly improving performance of the generic particle filter that uses transition prior, i.e., the system state transition prior distribution, as the proposal distribution. In this paper we propose to use the Gauss-Newton EKF/UKF to replace EKF/UKF for generating proposal distribution in a particle filter. The Gauss-Newton EKF/UKF that uses iterated measurement update can approximate the optimal proposal distribution more closer than EKF/UKF, especially in the case of significant nonlinearity in the measurement function. As a result, the Gauss-Newton EKF/UKF is able to generate and propagate the proposal distribution for each particle much better than EKF/UKF, thus further improving the performance of state estimation. Simulation results for a nonlinear/non-Gaussian time-series demonstrate the superior estimation accuracy of our method compared with state-of-the-art filters.

  • Application of Rotating-EM Field to Four-Septum TEM Cell for Radiated Immunity/Susceptibility Test

    Kimitoshi MURANO  Hiroko KAWAHARA  Fengchao XIAO  Majid TAYARANI  Yoshio KAMI  

     
    PAPER-Measurement and Immunity

      Vol:
    E90-B No:6
      Page(s):
    1322-1328

    A new radio-frequency (RF) radiated immunity/susceptibility test method using four-septum TEM cell is proposed. A rotating-EM field can be generated inside the cell by feeding four-different RF DSB-SC signals to four septa arranged in the cell. Since a polarization plane of the rotating-EM field rotates in a low speed, the immunity/susceptibility test for the EM field with various polarizations can be conducted more easily. In this paper, a technique for generating the rotating-EM field in the cell is investigated. The basic characteristics of the cell and the rotating-EM field by using the technique are clarified. To verify the validity of this test method, a RF radiated susceptibility of a printed circuit board is measured. The measured results are verified by comparing with the theoretical results based on modified telegrapher's equations.

  • Challenges in Designing CMOS Wireless Systems-on-a-Chip

    Masoud ZARGARI  David SU  

     
    INVITED PAPER

      Vol:
    E90-C No:6
      Page(s):
    1142-1148

    Over the past ten years, the demand for low-cost, low-power, and small form-factor portable wireless devices has led to the integration of RF transceivers on the same silicon as digital processors to form wireless systems-on-a-chip. This paper describes the challenges in designing CMOS systems-on-a-chip for wireless communications. RF transceiver building blocks for signal amplification, frequency translation, and frequency selectivity are examined with special emphasis on low noise amplifiers, power amplifiers, mixers, and frequency synthesizers. System-on-a-chip integration issues such as leakage currents of digital logic, calibration techniques, and noise coupling are also discussed.

  • Characteristics of 60 GHz Analog RF-Optic Transceiver Module

    Jeha KIM  Yong-Duck CHUNG  Kwang-Seong CHOI  Young-Shik KANG  Kyoung-Ik CHO  

     
    INVITED PAPER

      Vol:
    E90-C No:2
      Page(s):
    359-364

    Using an electro-absorption duplexer (EAD) we presented a transceiver (TRx) module for dual function of both electrical-to-optical (E/O) and optical-to-electrical (E/O) conversion at 60 GHz band. The EAD chip was fabricated by monolithically integrating both a waveguide photodiode (PD) and an electro-absorption modulator (EAM) in association with traveling wave electrodes. We also investigated the issues of RF packaging in which the optoelectronic and electronic amplifier devices were co-packaged in a single housing. The RF impedance matching was accomplished in assistance with a microstrip bandpass filter.

  • A 900 MHz RF Transmitter with Output LO Suppression

    Viet-Hoang LE  Trung-Kien NGUYEN  Seok-Kyun HAN  Sang-Gug LEE  

     
    LETTER-Electronic Circuits

      Vol:
    E90-C No:1
      Page(s):
    201-203

    This letter presents a 900 MHz ZigBee RF transmitter front-end with on-chip LO suppression circuit at the output. To suppress the LO leakage at the RF output, a novel LO suppression circuit is adopted at the up-conversion mixer. The RF transmitter implemented in 0.18 µm CMOS shows more than 28 dB of LO suppression over a wide range of the baseband signal power variation.

  • The Design of Square-Root-Raised-Cosine FIR Filters by an Iterative Technique

    Chia-Yu YAO  

     
    PAPER-Digital Signal Processing

      Vol:
    E90-A No:1
      Page(s):
    241-248

    Using a pair of matched square-root-raised-cosine (SRRC) filters in the transmitter and the receiver in a band-limited digital communication system can theoretically achieve zero inter-symbol interference (ISI). In reality, the ISI cannot be zero when both SRRC filters are approximately implemented because of some numerical precision problems in the design phase as well as in the implementation phase. In this paper, the author proposes an iterative method to design the coefficients of SRRC FIR filters. The required ISI of the system can be specified such that both ISI and frequency domain specifications are monitored in the design phase. Since the ISI can be specified beforehand, the tradeoff between performance and the filter length becomes possible in the proposed design algorithm.

  • Fabrication of Microchannel with Thin Cover Layer for an Optical Waveguide MEMS Switch Based on Microfluidics

    Takuji IKEMOTO  Yasuo KOKUBUN  

     
    PAPER-Micro/Nano Photonic Devices

      Vol:
    E90-C No:1
      Page(s):
    78-86

    We propose and demonstrate a new fabrication process of a microchannel using the Damascene process. This process aims to integrate photonic circuits with microchannels fabricated in a glass film. The microchannel is fabricated by the removal of the sacrificial layer after a sacrificial layer is formed by the Damascene process and the cover is formed by sputter deposition. A thin cover layer can be formed by the sacrificial method, because the cover layer is supported by the sacrificial layer during film formation. The cover layer is hermetically sealed, since it is formed by radio frequency (RF) sputtering deposition. The thickness is 1 µm and the width ranges from 3.5 to 8 µm. Using the proposed microchannel fabrication method, we prepared a microelectromechanical system (MEMS) optical switch using microfluidics, and we confirmed its functional operation. This optical switch actuates a minute droplet of liquid injected into the microchannel using Maxwell's stresses. Light propagates straight through the waveguide so that the light passes through the microchannel when the droplet is in the microchannel, but the light rays are completely reflected into a crossed waveguide when the droplet is not in the microchannel. Since this fabrication method uses techniques common to those in the formation of copper wiring in an IC chip, it can be used in the microchannel process.

  • A Novel Sensing System for Glucose in a Solution Based on Cataluminescence

    Masahiro OZAKI  Tohru OKABAYASHI  Teppei ISHIMARU  Nobuhiko YAMASHITA  Masuo NAKAGAWA  

     
    PAPER-Bioelectronics and Sensors

      Vol:
    E89-C No:12
      Page(s):
    1792-1795

    A novel sensing system for glucose in aqueous solution based on cataluminescence(CTL) is proposed. CTL is a kind of chemiluminescence emitted in a course of catalytic oxidation of combustible substances. A sensing system consisting of a CTL-based chemical-sensor made of the γ-Al2O3 catalyst activated with Tb and an ultrasonic nebulizer is developed. CTL is emitted by injection of air containing mist of a glucose solution prepared by the nebulizer on the catalyst. The CTL intensity measured by a photomultiplier is reproducible for the repeated injection of the mist, and the system can measure glucose concentration in a range of 1-200 mg/dl.

  • Amplified Spontaneous Emissions from π-Conjugated Dye Doped Polymer Film and Silicate Optical Fiber

    Yasuaki ITAKURA  Akihiro TOMIOKA  Shinji KINOSHITA  Atsushi FUJIMOTO  

     
    PAPER-Evaluation of Organic Materials

      Vol:
    E89-C No:12
      Page(s):
    1746-1749

    We prepared transparent polymer films doped with π-conjugated organic dyes around a multimode silica fiber and observed very narrow fluorescence peaks as compared with the fluorescence in solution. The peak position showed no dependence on the excitation wavelength, indicating that it could not be explained by a whispering gallery mode in a medium with broad optical gain. The peaks can be explained by amplified spontaneous emissions (ASE) because the intensity depended linearly on the excitation intensity with a threshold. When the dye-doped film was formed on the portion of a fiber with the clad etched out and was excited by the polarized laser propagating inside the fiber core, we observed ASE peaks not of the dyes but of the optical fiber itself, suggesting the possibility that the dyes were oriented with their transition moment pointing parallel to the film surface. These fiber ASE peaks shifted to longer wavelength when we varied the excitation wavelength to shorter wavelength, which clearly ruled out the possibility of silicate Raman scattering as the origin.

  • RF Technology Enablers for Software-Defined Radios Open Access

    Lawrence LARSON  

     
    INVITED PAPER

      Vol:
    E89-B No:12
      Page(s):
    3174-3178

    RF system and circuit approaches for cognitive radios, based on software defined radio technology, are discussed. The increasing use of digital techniques, combined with wideband data converters and tunable front-end technologies, will enable these systems to become cost effective in the coming years.

  • Molecular Ordering in Self-Organized Dye Particles--Near-Field and Polarized Evanescent-Field Fluorescence Study--

    Shinji KINOSHITA  Akihiro TOMIOKA  Atsushi FUJIMOTO  Yasuaki ITAKURA  

     
    PAPER-Evaluation of Organic Materials

      Vol:
    E89-C No:12
      Page(s):
    1735-1740

    Self-organized organic dye particles of micrometer and submicrometer size were prepared by utilizing a wetting/dewetting process of polar solvent on a hydrophilic glass substrate. The near-field scanning optical microscopy successfully identified near-field excited near-field fluorescence from single particles, however, the majority of the small particles with diameters around 2 µm or less did not show fluorescence under near-field observation. In contrast, far-field fluorescence, when excited by a polarized evanescent field, was observed, with the intensity depending on the excitation polarization, indicating that molecules' transition moment within dye particles was oriented parallel to the substrate surface. Single particle fluorescence spectrum consistently showed an identical sharp peak with a large redshift, indicating that the particles were composed of identical dye aggregates similar to J-aggregates. These observations suggest that the near-field at the probe tip was polarized parallel to the probe axis. Another observation, that molecules were oriented in a similar direction among adjacent particles, suggests that the dewetting process contributed to the alignment of the molecular orientation among adjacent particles, which further proves that the present specimen was formed by a self-organizing mechanism.

  • Chip-Level Performance Improvement Using Triple Damascene Wiring Design Concept for the 0.13 µm CMOS Generation and Beyond

    Noriaki ODA  Hiroyuki KUNISHIMA  Takashi KYOUNO  Kazuhiro TAKEDA  Tomoaki TANAKA  Toshiyuki TAKEWAKI  Masahiro IKEDA  

     
    PAPER

      Vol:
    E89-C No:11
      Page(s):
    1544-1550

    A novel wiring design concept called "Triple Damascene" is presented. We propose a new technology to mix wirings with different thickness in one layer by using dual damascene process without increasing mask steps. In this technology, three types of grooves are opened simultaneously. Deep trenches for thick wires, as well as vias and shallow trenches, are selectively opened. By the design concept using this technology, a 30% reduction in wiring delay is obtained for critical path. A 5% reduction in chip size is also obtained as the effect of decrease in repeater number for a typical high-performance multi-processing unit (MPU) in 0.13 µm generation. An example for performance enhancement in an actual product of graphic MPU chip is also demonstrated.

  • Investigation of Photoluminescence and Electroluminescence in Combination of Eu Complex and Blue Phosphorescent Dye Doped System

    Yuichi HINO  Hirotake KAJII  Yutaka OHMORI  

     
    PAPER-Organic Molecular Electronics

      Vol:
    E89-C No:10
      Page(s):
    1465-1468

    We investigated luminescent properties in combination of red emissive europium complex of tris(dibenzoylmethane)-mono(4,7-dimethylphenanthroline)europium(III) [Eu(dbm)3phen] and blue phosphorescent molecule of bis[(4,6-difluorophenyl)-pyridinato-N,C2'] (picolinate) iridium (III) (FIrpic) doped in poly(N-vinyl-carbazole) (PVK). A sharp red emission from Eu(dbm)3phen was observed in photoluminescence (PL) measurement, whereas, in the case of electroluminescence (EL), emission from FIrpic and Eu compound were observed. The difference of the PL and EL spectra indicates that different energy transfer processes between Eu(dbm)3phen and FIrpic are suggested.

  • A 0.18 µm CMOS 3.125-Gb/s Digitally Controlled Adaptive Line Equalizer with Feed-Forward Swing Control for Backplane Serial Link

    Ki-Hyuk LEE  Jae-Wook LEE  Woo-Young CHOI  

     
    PAPER-Electronic Circuits

      Vol:
    E89-C No:10
      Page(s):
    1454-1459

    A new compact line equalizer is proposed for backplane serial link applications. The equalizer has two control blocks. The feed-forward swing control block determines the optimal low frequency level and the feedback control block detects signal shapes and decides the high-frequency boosting level of the equalizer. Successful equalization is demonstrated over a 1.5 m long PCB trace at 3.125-Gb/s by the circuit realized with 0.18 µm CMOS process. The circuit occupies only 0.16 mm2 and consumes 20 mW with 1.8 V supply.

  • Robust Scene Extraction Using Multi-Stream HMMs for Baseball Broadcast

    Nguyen Huu BACH  Koichi SHINODA  Sadaoki FURUI  

     
    PAPER-Image Processing and Video Processing

      Vol:
    E89-D No:9
      Page(s):
    2553-2561

    In this paper, we propose a robust statistical framework for extracting scenes from a baseball broadcast video. We apply multi-stream hidden Markov models (HMMs) to control the weights among different features. To achieve a large robustness against new scenes, we used a common simple structure for all the HMMs. In addition, scene segmentation and unsupervised adaptation were applied to achieve greater robustness against differences in environmental conditions among games. The F-measure of scene-extracting experiments for eight types of scene from 4.5 hours of digest data was 77.4% and was increased to 78.7% by applying scene segmentation. Furthermore, the unsupervised adaptation method improved precision by 2.7 points to 81.4%. These results confirm the effectiveness of our framework.

  • An Efficient Distributed Power Control for Infeasible Downlink Scenarios--Global-Local Fixed-Point-Approximation Technique

    Noriyuki TAKAHASHI  Masahiro YUKAWA  Isao YAMADA  

     
    PAPER

      Vol:
    E89-A No:8
      Page(s):
    2107-2118

    In this paper, we present an efficient downlink power control scheme, for wireless networks, based on two key ideas: (i) global-local fixed-point-approximation technique (GLOFPAT) and (ii) bottleneck removal criterion (BRC). The proposed scheme copes with all scenarios including infeasible case where no power allocation can provide all multiple accessing users with target quality of service (QoS). For feasible case, the GLOFPAT efficiently computes a desired power allocation which corresponds to the allocation achieved by conventional algorithms. For infeasible case, the GLOFPAT offers valuable information to detect bottleneck users, to be removed based on the BRC, which deteriorate overall QoS. The GLOFPAT is a mathematically-sound distributed algorithm approximating desired power allocation as a unique fixed-point of an isotone mapping. The unique fixed-point of the global mapping is iteratively computed by fixed-point-approximations of multiple distributed local mappings, which can be computed in parallel by base stations respectively. For proper detection of bottleneck users, complete analysis of the GLOFPAT is presented with aid of the Tarski's fixed-point theorem. Extensive simulations demonstrate that the proposed scheme converges faster than the conventional algorithm and successfully increases the number of happy users receiving target QoS.

161-180hit(344hit)