The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] SEM(686hit)

541-560hit(686hit)

  • Experimental Characterization of the Feedback Induced Noise in Self-Pulsing Lasers

    Minoru YAMADA  Yasuyuki ISHIKAWA  Shunsuke YAMAMURA  Mitsuharu KIDU  Atsushi KANAMORI  Youichi AOKI  

     
    PAPER-Quantum Electronics

      Vol:
    E82-C No:12
      Page(s):
    2241-2247

    Generating conditions of the optical feedback noise in self-pulsing lasers were experimentally examined. The noise charcteristics were determined by changing the operating power, the feedback distance and the feedback ratio for several types of self-pulsing lasers. The idea of the effective modulation index was introduced to evaluate the generating conditions in an uniform manner based on the mode competition theory. Validity of the idea was experimentally confirmed for generation of noise.

  • Schedule-Clock-Tree Routing for Semi-Synchronous Circuits

    Kazunori INOUE  Wataru TAKAHASHI  Atsushi TAKAHASHI  Yoji KAJITANI  

     
    PAPER

      Vol:
    E82-A No:11
      Page(s):
    2431-2439

    It is known that the clock-period can be shorter than the maximum of signal-delays between registers if the clock arrival time to each register is properly scheduled. The algorithm to design an optimal clock-schedule was given. In this paper, we propose a clock-tree routing algorithm that realizes a given clock-schedule using the Elmore-delay model. Following the deferred-merge-embedding (DME) framework, the algorithm generates a topology of the clock-tree and simultaneously determines the locations and sizes of intermediate buffers. The experimental results showed that this method constructs a clock-tree with moderate wire length for a random layout of scheduled registers. Notably, the required wire length for a gentle layout of scheduled registers was shown to be almost equal to that of zero-skew clock-trees.

  • Clock Period Minimization of Semi-Synchronous Circuits by Gate-Level Delay Insertion

    Tomoyuki YODA  Atsushi TAKAHASHI  

     
    PAPER

      Vol:
    E82-A No:11
      Page(s):
    2383-2389

    A semi-synchronous circuit is a circuit in which every register is ticked by a clock periodically, but not necessarily simultaneously. In a semi-synchronous circuit, the minimum delay between registers may be critical with respect to the clock period of the circuit, while it does not affect the clock period of an ordinary synchronous circuit. In this paper, we discuss a delay insertion method which makes such a semi-synchronous circuit faster. The maximum delay-to-register ratio over the cycles in the circuit gives a lower bound of the clock period. We show that this bound is achieved in the semi-synchronous framework by the proposing gate-level delay insertion method.

  • Colored Timed Petri-Nets Modeling and Job Scheduling Using GA of Semiconductor Manufacturing

    Sin Jun KANG  Seok Ho JANG  Hee Soo HWANG  Kwang Bang WOO  

     
    LETTER-Algorithm and Computational Complexity

      Vol:
    E82-D No:11
      Page(s):
    1483-1485

    In this paper, an effective method of system modeling and dynamic scheduling to improve operation and control for the Back-End process of semiconductor manufacturing is developed by using Colored Timed Petri-Nets (CTPNs). The simulator of a CTPNs model was utilized to generate a new heuristic scheduling method with genetic algorithm(GA) which enables us to obtain the optimal values of the weighted delay time and standard deviation of lead time.

  • Expanding WDM Signal Transport Distance between Photonic Transport System Nodes by Using SOAs

    Norio SAKAIDA  Hiroshi YASAKA  

     
    PAPER-Opto-Electronics

      Vol:
    E82-C No:11
      Page(s):
    2065-2069

    This paper describes the effectiveness of compact semiconductor optical amplifiers (SOAs) in the photonic transport system (PTS). Such amplifiers are small enough to permit high-density packaging. SOAs, having unsaturated signal gain of 10 dB and saturation output power of 10 dBm, can improve the Q-value by 3 over the SOA input power range of 10 dB. Within this range, the signal transport distance can be expanded from 360 km to 600 km by placing SOAs on individual optical channels in a PTS even though the amplified spontaneous emission (ASE) generated by individual SOAs is combined with the optical signals and delivered to the same output fiber. This result indicates that it is useful to employ compact SOAs in the PTS for enlarging the distances between nodes.

  • Wavelength Converters

    Allan KLOCH  Peter Bukhave HANSEN  David WOLFSON  Tina FJELDE  Kristian STUBKJAER  

     
    INVITED PAPER-Optical Active Devices and Modules

      Vol:
    E82-B No:8
      Page(s):
    1209-1220

    After a short introduction to the different requirements to and techniques for wavelength conversion, focus is on cross-gain and cross-phase modulation in SOA based converters. Aspects like jitter accumulation, regeneration and conversion to the same wavelength is discussed. It is predicted that jitter accumulation can be minimised while also assuring a high extinction ratio by using a 9-10 dB ratio between the signal and CW power. Using this guideline simulations show that 20 cross-gain modulation converters can be cascaded at 10 Gbit/s with only 20 ps of accumulated jitter and an extinction ratio of 10 dB. The regenerative capabilities of the cross-phase converters are described and verified experimentally at 20 Gbit/s. By controlling the input power to an EDFA, the noise redistribution and improvement of the signal-to-noise ratio is demonstrated. In a similar experiment at 2.5 Gbit/s, the regeneration causes a reduction of the required input power to an in-line EDFA of 6 dB for a power penalty of 1 dB at a bit error rate of 10-9. If two converters are concatenated the power requirement is reduced 8 dB. Obviously, the power reduction allows for longer spans between in-line EDFAs. A simple scheme for regeneration without wavelength conversion is assessed at 2.5 Gbit/s resulting in 4.5 dB lower required EDFA input power. The scheme is characterised by a quasi-digital transfer function that is ideal for regeneration. A combination of cross-gain and cross-phase conversion is used to perform conversion to the same wavelength at 20 Gbit/s. The insertion penalty for this dual-stage converter is below 2 dB and is mainly caused by extinction ratio degradation from the cross-gain converter. Finally, a new device for all-optical wavelength conversion has been proposed and 2.5 Gbit/s operation has been simulated with good results.

  • A 1.55-µm Hybrid Integrated Wavelength-Converter Module Using Spot-Size Converter Integrated Semiconductor Optical Amplifiers on a Planar-Lightwave-Circuit Platform

    Rieko SATO  Yasuhiro SUZUKI  Naoto YOSHIMOTO  Ikuo OGAWA  Toshikazu HASHIMOTO  Toshio ITO  Akio SUGITA  Yuichi TOHMORI  Hiromu TOBA  

     
    PAPER-Optical Active Devices and Modules

      Vol:
    E82-B No:8
      Page(s):
    1221-1227

    A 1.55-µm hybrid integrated wavelength-converter module was fabricated using a two-channel spot-size converter integrated semiconductor optical amplifier (SS-SOA) on a planar-lightwave-circuit (PLC) platform. Clear eye opening and penalty-free wavelength conversion were obtained at 2.5-Gb/s modulation with a wide wavelength difference of 46 nm. The module showed good characteristics including low insertion loss (0.1 dB), and high conversion efficiency (-0.2 dB). It also showed stable wavelength conversion for as wide as a 13 temperature range.

  • Wavelength Converters

    Allan KLOCH  Peter Bukhave HANSEN  David WOLFSON  Tina FJELDE  Kristian STUBKJAER  

     
    INVITED PAPER-Optical Active Devices and Modules

      Vol:
    E82-C No:8
      Page(s):
    1475-1486

    After a short introduction to the different requirements to and techniques for wavelength conversion, focus is on cross-gain and cross-phase modulation in SOA based converters. Aspects like jitter accumulation, regeneration and conversion to the same wavelength is discussed. It is predicted that jitter accumulation can be minimised while also assuring a high extinction ratio by using a 9-10 dB ratio between the signal and CW power. Using this guideline simulations show that 20 cross-gain modulation converters can be cascaded at 10 Gbit/s with only 20 ps of accumulated jitter and an extinction ratio of 10 dB. The regenerative capabilities of the cross-phase converters are described and verified experimentally at 20 Gbit/s. By controlling the input power to an EDFA, the noise redistribution and improvement of the signal-to-noise ratio is demonstrated. In a similar experiment at 2.5 Gbit/s, the regeneration causes a reduction of the required input power to an in-line EDFA of 6 dB for a power penalty of 1 dB at a bit error rate of 10-9. If two converters are concatenated the power requirement is reduced 8 dB. Obviously, the power reduction allows for longer spans between in-line EDFAs. A simple scheme for regeneration without wavelength conversion is assessed at 2.5 Gbit/s resulting in 4.5 dB lower required EDFA input power. The scheme is characterised by a quasi-digital transfer function that is ideal for regeneration. A combination of cross-gain and cross-phase conversion is used to perform conversion to the same wavelength at 20 Gbit/s. The insertion penalty for this dual-stage converter is below 2 dB and is mainly caused by extinction ratio degradation from the cross-gain converter. Finally, a new device for all-optical wavelength conversion has been proposed and 2.5 Gbit/s operation has been simulated with good results.

  • A 1.55-µm Hybrid Integrated Wavelength-Converter Module Using Spot-Size Converter Integrated Semiconductor Optical Amplifiers on a Planar-Lightwave-Circuit Platform

    Rieko SATO  Yasuhiro SUZUKI  Naoto YOSHIMOTO  Ikuo OGAWA  Toshikazu HASHIMOTO  Toshio ITO  Akio SUGITA  Yuichi TOHMORI  Hiromu TOBA  

     
    PAPER-Optical Active Devices and Modules

      Vol:
    E82-C No:8
      Page(s):
    1487-1493

    A 1.55-µm hybrid integrated wavelength-converter module was fabricated using a two-channel spot-size converter integrated semiconductor optical amplifier (SS-SOA) on a planar-lightwave-circuit (PLC) platform. Clear eye opening and penalty-free wavelength conversion were obtained at 2.5-Gb/s modulation with a wide wavelength difference of 46 nm. The module showed good characteristics including low insertion loss (0.1 dB), and high conversion efficiency (-0.2 dB). It also showed stable wavelength conversion for as wide as a 13 temperature range.

  • Design of Time-Varying Lifting Wavelet Filters

    Koichi KUZUME  Koichi NIIJIMA  

     
    PAPER

      Vol:
    E82-A No:8
      Page(s):
    1412-1419

    Wavelet filters used in usual applications are not time-varying filters. In this paper, we present a novel method to design biorthogonal wavelet filters which are orthogonal to the input signals. We call newly designed filters time-varying lifting wavelet filters (TVLWF). Their feature is to vary the wavelet filters adapting to the input signal by tuning free parameters contained in the lifting scheme developed by Sweldens. These filters are almost compact support and perfect reconstruction. By using TVLWF, we demonstrate an application to data compression of electrocardiogram (ECG) which is one of the semi-periodic time-series signals and show that the time-varying system can be constructed easily and the proposed method is very useful for data compression.

  • A New CD Measurement Method Linked with the Electrical Properties of Devices

    Fumio KOMATSU  Motosuke MIYOSHI  Hiromu FUJIOKA  

     
    PAPER-Semiconductor Materials and Devices

      Vol:
    E82-C No:7
      Page(s):
    1347-1352

    This paper describes a new measurement method of a CD-SEM with nanometer-level precision and good correlation with electrical characteristics for an actual device of ultra-large-scale integration (ULSI). With the decrease in feature size, the pattern to be measured tends to become a curved shape. In order to measure such a pattern within measurement precision on the order of 5 nm, two-dimensional measurement is effective. Here we report a new measurement algorithm featuring that the critical dimension is derived from the value of the area of a measurement pattern. We apply this measurement method to actual device of 64-Mbit DRAM and confirm the reproducibility of 3.6 nm for the gate linewidth measurement, and that of 5.6 nm for the hole diameter measurement. Furthermore, we verify that the measurement values of the gate linewidth have a strong correlation with the threshold voltage and those of the hole diameter also have a strong correlation with the contact resistance, respectively.

  • Design and Development of 3-Dimensional Process Simulator

    Tetsunori WADA  Norihiko KOTANI  

     
    INVITED PAPER

      Vol:
    E82-C No:6
      Page(s):
    839-847

    Design concepts and backgrounds of a 3-dimensional semiconductor process simulator are presented. It is designed to become a basis of developing semiconductor process models. An input language is designed to realize flexibly controlling simulation sequence, and its interpreter program is designed to accept external software to be controlled and to be integrated into a system. To realize data-exchanges between the process simulator and other software, a self-describing data-file format is designed and related program libraries are developed. A C++ class for solving drift-diffusion type partial-differential-equation in a three-dimensional space is developed.

  • Quantum Transport Modeling of Ultrasmall Semiconductor Devices

    Hideaki TSUCHIYA  Tanroku MIYOSHI  

     
    INVITED PAPER

      Vol:
    E82-C No:6
      Page(s):
    880-888

    With the progress of LSI technology, the electronic device size is presently scaling down to the nano-meter region. In such an ultrasmall device, it is indispensable to take quantum mechanical effects into account in device modeling. In this paper, we first review the approaches to the quantum mechanical modeling of carrier transport in ultrasmall semiconductor devices. Then, we propose a novel quantum device model based upon a direct solution of the Boltzmann equation for multi-dimensional practical use. In this model, the quantum effects are represented in terms of quantum mechanically corrected potential in the classical Boltzmann equation.

  • Mechanical Stress Simulation for Highly Reliable Deep-Submicron Devices

    Hideo MIURA  Shuji IKEDA  

     
    INVITED PAPER

      Vol:
    E82-C No:6
      Page(s):
    830-838

    We have improved the mechanical reliability of deep-submicron semiconductor devices by applying a simulation technique. Typical kinds of damages that reduce the reliability are dislocations in silicon substrates, delamination or cracking of thin films, and deterioration of electronic characteristics of devices. The mechanical stress that develops in device structures is caused by not only mismatches in thermal expansion coefficients among thin film materials but also intrinsic stress of thin films such as poly-silicon and silicides. Fine patterning by dry etching makes sharp edges and they also cause stress concentration and thus high stress. The manufacturing processes in which stress mainly develops are isolation, gate formation, and interconnect formation. We have developed methods for reducing the stress in each of the above-mentioned process. This stress reduction is very effective for highly reliable manufacturing. Finally, we clarify the effect of the residual stress in transistor structures on shift in the electronic characteristics of MOS transistors.

  • Efficient Image Segmentation Preserving Semantic Object Shapes

    Hyun Sang PARK  Jong Beom RA  

     
    PAPER

      Vol:
    E82-A No:6
      Page(s):
    879-886

    Homogeneous but distinct visual objects having low-contrast boundaries are usually merged in most of the segmentation algorithms. To alleviate this problem, an efficient image segmentation algorithm based on a bottom-up approach is proposed by using spatial domain information only. For initial image segmentation, we adopt a new marker extraction algorithm conforming to the human visual system. It generates dense markers in visually complex areas and sparse markers in visually homogeneous areas. Then, two region-merging algorithms are successively applied so that homogeneous visual objects can be represented as simple as possible without destroying low-contrast real boundaries among them. The first one is to remove insignificant regions in a proper merging order. And the second one merges only homogeneous regions, based on ternary region classification. The resultant segmentation describes homogeneous visual objects with few regions while preserving semantic object shapes well. Finally, a size-based region decision procedure may be applied to represent complex visual objects simpler, if their precise semantic contents are not necessary. Experimental results show that the proposed image segmentation algorithm represents homogeneous visual objects with a few regions and describes complex visual objects with a marginal number of regions with well-preserved semantic object shapes.

  • A Connectionless Server Using AAL5 in Public ATM Networks

    Woojin SEOK  Okhwan BYEON  Changhwan OH  Kiseon KIM  

     
    PAPER

      Vol:
    E82-A No:6
      Page(s):
    994-1001

    Since ATM network is a connection-oriented network, the operation for connectionless service is required for data service in it. There are many ways to support connectionless service in ATM network. They are ATM LAN Emulation, Classical IP and ARP over ATM, Indirect approach, Direct approach, and IP switch. It is known that Direct approach is suited for public network. The connectionless server supports connectionless service in Direct approach. There have been presented two kinds of methods, that is, streaming forwarding method and reassembly forwarding method, to forward the frames in the connectionless server. Reassembly forwarding method can work well with AAL5 which has better efficient characteristics than AAL3/4 in terms of easy use and fewer overheads. This paper proposes an algorithm that can decrease the loss of frame by a proposed buffer management working with AAL5. This paper also investigates the structure of the proposed connectionless server and its performance with the one of the conventional connectionless server through simulations. The proposed connectionless server shows a less frame loss and transfer delay than that of the conventional connectionless server.

  • Observation of Self-Pulsation Phenomenon in a Semiconductor Ring Laser

    Kozo TAGUCHI  Kaname FUKUSHIMA  Atsuyuki ISHITANI  Masahiro IKEDA  

     
    LETTER-Opto-Electronics

      Vol:
    E82-C No:4
      Page(s):
    659-661

    We first demonstrate a self-pulsation phenomenon in a semiconductor ring laser(SRL). Not only self-mode-locked optical pulse but self-Q-switched optical pulse can be observed in a SRL. Furthermore, experimental results show that the repetition period of the Q-switched optical pulse train can be controlled by the injection current to a SRL.

  • Optical Receiver with a Saturated Electrical Amplifier for Distorted Signal Light

    Kyo INOUE  

     
    LETTER-Communication Device and Circuit

      Vol:
    E82-B No:3
      Page(s):
    556-560

    An optical receiver with a saturated electrical amplifier is studied for signal light that is distorted due to the use of a gain-saturated semiconductor optical amplifier or homowavelength crosstalk light. It is shown that less penalty is induced in a receiver with a DC-coupled saturated amplifier than in one with a linear amplifier, in a practical situation where the decision threshold is fixed at a value optimized for a back-to-back signal. The result suggests that a receiver with a saturated amplifier or a limitter is preferable to an automatic gain control circuit for detecting distorted signal lights.

  • 5 Gsps Oversampling Analog-to-Digital Converters with Polarity Alternating Feedback Comparator

    Takumi MIYASHITA  Alfredo OLMOS  Mizuhisa NIHEI  Yuu WATANABE  

     
    PAPER-Compound Semiconductor Devices

      Vol:
    E82-C No:3
      Page(s):
    483-490

    We fabricated and evaluated a second-order ΣΔ ADC with a polarity alternating feedback (PAF) comparator based on 0.4 µm InGaP/InGaAs enhancement and depletion mode high electron mobility transistors (E/D HEMT) technology. We propose a PAF technique for enhancing the sampling frequency and have applied the technique in the design of ADC circuit. The ADC has a signal-to-noise ratio (SNR) of 43 dB when operating at a differential clock frequency of 4.9 GHz, and has a power dissipation of 400 mW.

  • An IIR SC Filter Utilizing Square Roots of Transfer Function Coefficient Values

    Toshihiro MORI  Nobuaki TAKAHASHI  Tsuyoshi TAKEBE  

     
    PAPER

      Vol:
    E82-A No:3
      Page(s):
    442-449

    Recently, we proposed a low power consumption FIR switched-capacitor filter constructed with capacitors having capacitances in proportion to square roots of transfer function coefficient values. It is referred to as an FIR semi-parallel cyclic type (SPCT) filter. In this paper, we present IIR SPCT filter. It needs only a single operational amplifier, hence being low power consumption. The IIR SPCT filter has smaller total capacitance than one of the IIR parallel cyclic type (PCT) filter and better high frequency response than one of the IIR transfer function coefficient ratio (TCR) filter. As a whole, the IIR SPCT filter has middle performance of the IIR PCT and TCR filters for the total capacitance, the number of types of clock pulses, and high frequency response.

541-560hit(686hit)