The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] SEM(686hit)

501-520hit(686hit)

  • A Categorized Row-Column Scanning Computer Interface for the Disabled

    Yu-Luen CHEN  Ying-Ying SHIH  

     
    PAPER-Welfare Engineering

      Vol:
    E84-D No:9
      Page(s):
    1198-1205

    Most of the current research is focused on the row-column scanning keyboard interface for English letter and number input. At the present time, there are insufficient methods to control the computer mouse effectively. In this study, a categorized row-column scanning computer interface is developed to improve the conventional single key-in row-column scanning method. The beneficial developments include: speed enhancement by categorizing radicals of keyboard, input control of mouse, and multiple selection of input methods such as surface electromyographic (SEMG) control, breath pressure sensibility control with puff, force sensibility control, infrared sensibility control and single key-in control. Meanwhile, an enhancement software package is developed to increase the row-column scanning keyboard capabilities and to upgrade the completeness of the computer mouse for the disabled persons to control the operation of data entry and the associated implementation better.

  • Robust Receding Horizon Control of Discrete-Time Markovian Jump Uncertain Systems

    Byung-Gun PARK  Wook HYUN KWON  Jae-Won LEE  

     
    PAPER-Systems and Control

      Vol:
    E84-A No:9
      Page(s):
    2272-2279

    This paper proposes a receding horizon control scheme for a set of uncertain discrete-time linear systems with randomly jumping parameters described by a finite-state Markov process whose jumping transition probabilities are assumed to belong to some convex sets. The control scheme for the underlying systems is based on the minimization of an upper bound on the worst-case infinite horizon cost function at each time instant. It is shown that the mean square stability of the proposed control system is guaranteed under some matrix inequality conditions on the terminal weighting matrices. The proposed controller is obtained using semidefinite programming.

  • Probabilistic Information Retrieval Method Based on Differential Latent Semantic Index Space

    Liang CHEN  Naoyuki TOKUDA  Akira NAGAI  

     
    LETTER-Artificial Intelligence, Cognitive Science

      Vol:
    E84-D No:7
      Page(s):
    910-914

    To improve the unstable performance of the traditional keyword-based search engine due to ambiguities of a natural language such as synonymy and /or polysemy, we have developed a new advanced DLSI (differential latent semantic index) space based probabilistic information retrieval system. The new method exploits a most likelihood posteriori function providing a measure of reliability in retrieving a document in the database having a closest match with another document of a query. Our simple experiment gives a supporting evidence for the validity of the theory, which is capable of capturing the intricate variability in word usage contributing to a more robust context contingent search engine.

  • Review of Device Technologies of Flash Memories

    Takahiro OHNAKADO  Natsuo AJIKA  

     
    INVITED PAPER-Flash Memories

      Vol:
    E84-C No:6
      Page(s):
    724-733

    This paper reviews device technologies of flash memories, whose market has grown explosively due to the advantages of: (1) their low cost provided by availability of the single-transistor type cell with adoption of block-erase operation; (2) high functionality as electrically erasable and programmable non-volatile memories; and (3) high reliability with the mature floating gate technology. As for fast-random-access flash memories, their scaling issue, including a multi-level-cell technology, is discussed, and technologies for low power consumption, which is highly demanded for mobile electronic equipment, their major application, are described. Furthermore, device technologies of serial-access flash memories, which have achieved low cost with cell-size reduction, are also reviewed. Finally, a future promising technology of the NROM concept, which achieves a multi-storage-cell with low voltage operation and a simple process, is introduced.

  • All-Optical Clock Extraction at 160 Gbit/s with Monolithic Mode-Locked Laser Diodes

    Roland SCHREIECK  Martin KWAKERNAAK  Heinz JACKEL  

     
    LETTER-Lasers, Quantum Electronics

      Vol:
    E84-C No:6
      Page(s):
    841-844

    We demonstrate all-optical clock recovery at 160 Gbit/s by injection locking of a 10 GHz mode-locked laser diode. Effective locking in a range of 10 MHz is observed for average input powers around -10 dBm. The timing jitter is analyzed for data rates between 10 Gbit/s and 160 Gbit/s. Beyond 40 Gbit/s, the high frequency timing jitter of the slave laser becomes of prime importance and has to be taken into account since it degrades the performance of a subsequent receiver. Increasing power penalties are found, especially beyond 80 Gbit/s.

  • MNOS Nonvolatile Semiconductor Memory Technology: Present and Future

    Yoshiaki KAMIGAKI  Shin'ichi MINAMI  

     
    INVITED PAPER-MNOS Memory

      Vol:
    E84-C No:6
      Page(s):
    713-723

    We have manufactured large-scaled highly reliable MNOS EEPROMs over the last twenty years. In particular, at the present time, the smart-card microcontroller incorporating an embedded 32-kB MNOS EEPROM is rapidly expanding the markets for mobile applications. It might be said that we have established the conventional MNOS nonvolatile semiconductor memory technology. This paper describes the device design concepts of the MNOS memory, which include the optimization and control of the tunnel oxide film thickness (1.8 nm), and the scaling guideline that considers the charge distribution in the trapping nitride film. We have developed a high-performance MONOS structure and have not found any failure due to the MONOS devices in high-density EEPROM products during 10-year data retention tests after 105 erase/write cycles. The future development of this highly reliable MNOS-type memory will be focussed on the high-density cell structure and high-speed programming method. Recently, some promising ideas for utilizing an MNOS-type memory device, such as 1-Tr/bit cell for byte-erasable full-featured EEPROMs and 2-bit/Tr cell for flash EEPROMs have been proposed. We are convinced that MNOS technology will advance into the area of nonvolatile semiconductor memories because of its high reliability and high yield of products.

  • Operator Allocation Planning for a Product-Mix VLSI Assembly Facility

    Sumika ARIMA  Kazuyuki SAITO  

     
    PAPER-Integrated Electronics

      Vol:
    E84-C No:6
      Page(s):
    832-840

    This paper concerns resource planning in a VLSI assembly facility. The facility can process more than 100 sorts of WIPs (Works-In-Process) simultaneously. Specifically it performs product-mix production. An old resource estimation system, which gave a good estimation for a memory VLSI production facility, went wrong for an assembly facility. To adjust the estimation of required machinery resources of the assembly facility, a new parameter--the tuning value for the service time--is introduced. The tuning value expresses the reduction in machine utilization in the processing steps due to the product-mix. The value is empirically determined and the machinery resources can be estimated in good accuracy. Also the waiting time for processing in the incoming buffer is successfully considered in the estimation of turnaround time. However the tuning value is not enough in estimating human resources. A novel algorithm to estimate the resources for machine adjustments is proposed. The algorithm is based on a periodic assignment of multiple sorts of WIPs in a single machine, where the adjustments of machines for the product-mix are considered. The adjustments are additional operator's jobs in the product-mix. It estimates the operator request rate and machine utilization rate when multiple sorts of WIPs with different arrival rates are processed in a single machine. Finally, this resource estimation system considers the operator allocated not only to the preprocessing and postprocessing but also to the adjustments of machines for the product-mix. The estimated machinery, human resources, and turnaround time were evaluated in a real facility, and the proposed method is confirmed to be applicable in the weekly or monthly resource planning for the facility.

  • Temperature Insensitive Micromachined GaAlAs/GaAs Vertical Cavity Wavelength Filter

    Takeru AMANO  Fumio KOYAMA  Nobuhiko NISHIYAMA  Akihiro MATSUTANI  Kenichi IGA  

     
    PAPER-Optical Passive Devices and Modules

      Vol:
    E84-B No:5
      Page(s):
    1304-1310

    A novel temperature insensitive wavelength filter consisting of GaAlAs/GaAs distributed Bragg reflectors (DBRs) has been demonstrated. This micromachined DBR is mechanically tuned by differential thermal expansion. The strain-induced displacement of one mirror can generate wavelength tuning and trimming functions with an adjustable temperature dependence. We succeeded in the control of temperature dependence in this micromachined semiconductor filter by properly designing a vertical cavity structure. The achieved temperature dependence was as small as +0.01 nm/K, which is one-tenth of that of conventional semiconductor based optical filters. Also, a wavelength trimming of over 20 nm was demonstrated after completing the device fabrication. In addition, we demonstrated a 4 4 multiple wavelength micromachined vertical cavity filter array. The multi-wavelength filter array with a wavelength span of 45 nm was fabricated by partially etching off a GaAs wavelength control layer loaded on the top surface of device.

  • Temperature Insensitive Micromachined GaAlAs/GaAs Vertical Cavity Wavelength Filter

    Takeru AMANO  Fumio KOYAMA  Nobuhiko NISHIYAMA  Akihiro MATSUTANI  Kenichi IGA  

     
    PAPER-Optical Passive Devices and Modules

      Vol:
    E84-C No:5
      Page(s):
    678-684

    A novel temperature insensitive wavelength filter consisting of GaAlAs/GaAs distributed Bragg reflectors (DBRs) has been demonstrated. This micromachined DBR is mechanically tuned by differential thermal expansion. The strain-induced displacement of one mirror can generate wavelength tuning and trimming functions with an adjustable temperature dependence. We succeeded in the control of temperature dependence in this micromachined semiconductor filter by properly designing a vertical cavity structure. The achieved temperature dependence was as small as +0.01 nm/K, which is one-tenth of that of conventional semiconductor based optical filters. Also, a wavelength trimming of over 20 nm was demonstrated after completing the device fabrication. In addition, we demonstrated a 4 4 multiple wavelength micromachined vertical cavity filter array. The multi-wavelength filter array with a wavelength span of 45 nm was fabricated by partially etching off a GaAs wavelength control layer loaded on the top surface of device.

  • Temperature Dependence of Gain Characteristics in 1.3-µm AlGaInAs/InP Strained Multiple-Quantum-Well Semiconductor Lasers

    Toshio HIGASHI  Tsuyoshi YAMAMOTO  Tsutomu ISHIKAWA  Takuya FUJII  Haruhisa SODA  Minoru YAMADA  

     
    PAPER-Optical Active Devices and Modules

      Vol:
    E84-C No:5
      Page(s):
    648-655

    We have measured the temperature dependence of the gain characteristics in 1.3-µm AlGaInAs/InP strained multiple-quantum-well (MQW) semiconductor lasers using Hakki-Paoli method. By measuring the temperature dependences of the peak gain value and the gain peak wavelength, we evaluated the temperature dependences of the threshold current and the oscillation wavelength, respectively. The small temperature dependence of the threshold current in AlGaInAs/InP lasers is caused by the small temperature dependence of the transparency current density, which is represented by the characteristic temperature TJtr of 116 K. In AlGaInAs/InP high T0 lasers, the temperature dependence of the oscillation wavelength is slightly larger than that in GaInAsP/InP lasers because of the larger temperature dependence of bandgap wavelength 0.55 nm/K.

  • Influence of Wavelength Detuning on Device Performance of Electroabsorption Modulator Integrated Distributed Feedback Lasers Based on Identical Epitaxial Layer Approach

    Chang-Zheng SUN  Bing XIONG  Guo-Peng WEN  Yi LUO  Tong-Ning LI  Yoshiaki NAKANO  

     
    PAPER-Optical Active Devices and Modules

      Vol:
    E84-C No:5
      Page(s):
    656-659

    The effect of wavelength detuning on the device performance of identical-epitaxial-layer (IEL) electroabsorption (EA) modulator integrated distributed feedback (DFB) lasers is studied in detail. Based on the lasing behavior of integrated devices with different amount of wavelength detuning and the photocurrent spectra under different reverse biases, the optimal wavelength detuning is experimentally determined to be around 30-40 nm for our IEL integrated devices. By adopting gain-coupled DFB laser section, integrated devices with optimal wavelength detuning have demonstrated excellent single mode performances. The extinction ratio is measured to be greater than 15 dB at -3 V, and the modulation bandwidth is around 8 GHz.

  • Temperature Dependence of Gain Characteristics in 1.3-µm AlGaInAs/InP Strained Multiple-Quantum-Well Semiconductor Lasers

    Toshio HIGASHI  Tsuyoshi YAMAMOTO  Tsutomu ISHIKAWA  Takuya FUJII  Haruhisa SODA  Minoru YAMADA  

     
    PAPER-Optical Active Devices and Modules

      Vol:
    E84-B No:5
      Page(s):
    1274-1281

    We have measured the temperature dependence of the gain characteristics in 1.3-µm AlGaInAs/InP strained multiple-quantum-well (MQW) semiconductor lasers using Hakki-Paoli method. By measuring the temperature dependences of the peak gain value and the gain peak wavelength, we evaluated the temperature dependences of the threshold current and the oscillation wavelength, respectively. The small temperature dependence of the threshold current in AlGaInAs/InP lasers is caused by the small temperature dependence of the transparency current density, which is represented by the characteristic temperature TJtr of 116 K. In AlGaInAs/InP high T0 lasers, the temperature dependence of the oscillation wavelength is slightly larger than that in GaInAsP/InP lasers because of the larger temperature dependence of bandgap wavelength 0.55 nm/K.

  • Influence of Wavelength Detuning on Device Performance of Electroabsorption Modulator Integrated Distributed Feedback Lasers Based on Identical Epitaxial Layer Approach

    Chang-Zheng SUN  Bing XIONG  Guo-Peng WEN  Yi LUO  Tong-Ning LI  Yoshiaki NAKANO  

     
    PAPER-Optical Active Devices and Modules

      Vol:
    E84-B No:5
      Page(s):
    1282-1285

    The effect of wavelength detuning on the device performance of identical-epitaxial-layer (IEL) electroabsorption (EA) modulator integrated distributed feedback (DFB) lasers is studied in detail. Based on the lasing behavior of integrated devices with different amount of wavelength detuning and the photocurrent spectra under different reverse biases, the optimal wavelength detuning is experimentally determined to be around 30-40 nm for our IEL integrated devices. By adopting gain-coupled DFB laser section, integrated devices with optimal wavelength detuning have demonstrated excellent single mode performances. The extinction ratio is measured to be greater than 15 dB at -3 V, and the modulation bandwidth is around 8 GHz.

  • Improvised Assembly Mechanism for Component-Based Mobile Applications

    Masahiro MOCHIZUKI  Hideyuki TOKUDA  

     
    PAPER

      Vol:
    E84-B No:4
      Page(s):
    910-919

    We propose a mechanism to facilitate the development of component-based mobile applications with adaptive behaviors. The design principles and communication patterns of legacy software systems will greatly change in a forthcoming environment, where a variety of computing devices become embedded in home and office environments, users move around with/without portable computing devices, and all the devices are interconnected through wired/wireless networks. In the proposed mechanism, Improvised Assembly Mechanism (IAM), we realize functionality to compose an application in an ad hoc manner and to achieve the adaptation of applications by adding, replacing, supplementing, and relocating components at system runtime according to various environmental changes such as the locational changes of computing devices and users. The mechanism is implemented as a built-in functionality of the Soul component, which is one of the fundamental elements in the Possession model.

  • All-Optical XOR Logic Gate Based on Self-Phase Modulation of a Semiconductor Optical Amplifier without an Additional Synchronized Clock

    Hyuek Jae LEE  Chang-Soo PARK  

     
    LETTER-Fiber-Optic Transmission

      Vol:
    E84-B No:2
      Page(s):
    330-332

    The authors propose and experimentally demonstrate an all-optical exclusive OR (XOR) logic gate based on self-phase modulation (SPM) of a semiconductor optical amplifier (SOA). The scheme is insensitive to the polarization of the input signal and requires no additional synchronized clock. The output of the XOR gate showed the contrast ratio of more than 17 dB for the input signal at 2.5 GHz.

  • A Refined Definition of Semantic Security for Public-Key Encryption Schemes

    Hideaki SAKAI  Noriko NAKAMURA  Yoshihide IGARASHI  

     
    PAPER

      Vol:
    E84-D No:1
      Page(s):
    34-39

    We introduce a refined definition of semantic security. The new definition is valid against not only chosen-plaintext attacks but also chosen-ciphertext attacks whereas the original one is defined against only chosen-plaintext attacks. We show that semantic security formalized by the new definition is equivalent to indistinguishability, due to Goldwasser and Micali for each of chosen-plaintext attacks, non-adaptive chosen-ciphertext attack, and adaptive chosen-ciphertext attack.

  • Extracting Typical Classes and a Database Schema from Semistructured Data

    Nobutaka SUZUKI  Yoichirou SATO  Michiyoshi HAYASE  

     
    PAPER-Databases

      Vol:
    E84-D No:1
      Page(s):
    100-112

    Semistructured data has no a-priori schema information, which causes some problems such as inefficient storage and query execution. To cope with such problems, extracting schema information from semistructured data has been an important issue. However, in most cases optimal schema information cannot be extracted efficiently, and few efficient approximation algorithms have been proposed. In this paper, we consider an approximation algorithm for extracting "typical" classes from semistructured data. Intuitively, a class C is said to be typical if the structure of C is "similar" to those of "many" objects. We present the following results. First, we prove that the problem of deciding if a typical class can be extracted from given semistructured data is NP-complete. Second, we present an approximation algorithm for extracting typical classes from given semistructured data, and show a sufficient condition for the approximation algorithm to run in polynomial time. Finally, by using extracted classes obtained by the approximation algorithm, we propose a polynomial-time algorithm for constructing a set R of classes such that R covers all the objects to form a database schema.

  • A Note on Sensing Semi-One-Way Simple Multihead Finite Automata

    Yue WANG  Katsushi INOUE  Akira ITO  Tokio OKAZAKI  

     
    LETTER

      Vol:
    E84-D No:1
      Page(s):
    57-60

    This paper shows that nondeterministic sensing semi-one-way simple k-head finite automata are more powerful than nondeterministic sensing one-way simple k-head finite automata for any k2, and sensing semi-one-way simple 2-head finite automata are more powerful than semi-one-way simple 2-head finite automata, which gives an affirmative answer and a partial solution to two open problems on sensing semi-one-way simple multi-head finite automata in Ref.[3].

  • Clock Schedule Design for Minimum Realization Cost

    Tomoyuki YODA  Atsushi TAKAHASHI  

     
    PAPER-Performance Optimization

      Vol:
    E83-A No:12
      Page(s):
    2552-2557

    A semi-synchronous circuit is a circuit in which the clock is assumed to be distributed periodically to each individual register, though not necessarily to all registers simultaneously. In this paper, we propose an algorithm to achieve the target clock period by modifying a given target clock schedule as small as possible, where the realization cost of the target clock schedule is assumed to be minimum. The proposed algorithm iteratively improves a feasible clock schedule. The algorithm finds a set of registers that can reduce the cost by changing their clock timings with same amount, and changes the clock timing with optimal amount. Experiments show that the algorithm achieves the target clock period with fewer modifications.

  • Penalty-Free Operation of a DFB-LD in a State of Coherence Collapse and Its Application to Interferometric Noise Reduction

    Kyo INOUE  

     
    LETTER-Optical Fiber

      Vol:
    E83-B No:12
      Page(s):
    2702-2704

    When a single-mode LD is subjected to distant reflection, relative intensity noise and the width of the optical spectrum are drastically increased. This phenomenon is known as 'coherence collapse. ' This letter demonstrates that penalty-free operation is possible at 2.5 Gbit/s even when a DFB-LD is in a state of coherence collapse. In addition, an LD in a state of coherence collapse is applied to a situation where signal light suffers from interferometric crosstalk. The results show that the LD reduces the influence of interferometric noise because of its wide spectral width.

501-520hit(686hit)