The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] SI(16314hit)

4781-4800hit(16314hit)

  • A 250 MHz to 8 GHz GaAs pHEMT IQ Modulator

    Kiyoyuki IHARA  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E96-C No:2
      Page(s):
    245-250

    The author developed a wideband precise I/Q modulator using GaAs pHEMT technology. In this technology, pHEMT has 0.22 µm metallurgical gate length and ft=51 GHz at Vds=5V. With the careful design of the wideband phase shifter, this IQ modulator achieved a large wideband frequency range of 250 MHz to 8 GHz and good EVM performance after calibration. For overall frequency range, low distortion performance is obtained, where third order intermodulation is less than -42 dBc. Also the ACPR at 2.2 GHz for W-CDMA application is less than -74 dBc.

  • Exact Design of RC Polyphase Filters and Related Issues

    Hiroshi TANIMOTO  

     
    INVITED PAPER

      Vol:
    E96-A No:2
      Page(s):
    402-414

    This paper presents analysis and design of passive RC polyphase filters (RCPFs) in tutorial style. Single-phase model of a single-stage RCPF is derived, and then, multi-stage RCPFs are analyzed and obtained some restrictions for realizable poles and zeros locations of RCPFs. Exact design methods of RCPFs with equal ripple type, and Butterworth type responses are explained for transfer function design and element value design along with some design examples.

  • A 4–10 bit, 0.4–1 V Power Supply, Power Scalable Asynchronous SAR-ADC in 40 nm-CMOS with Wide Supply Voltage Range SAR Controller

    Akira SHIKATA  Ryota SEKIMOTO  Kentaro YOSHIOKA  Tadahiro KURODA  Hiroki ISHIKURO  

     
    PAPER

      Vol:
    E96-A No:2
      Page(s):
    443-452

    This paper presents a wide range in supply voltage, resolution, and sampling rate asynchronous successive approximation register (SAR) analog-to-digital converter (ADC). The proposed differential flip-flop in SAR logic and high efficiency wide range delay element extend the flexibility of speed and resolution tradeoff. The ADC fabricated in 40 nm CMOS process covers 4–10 bit resolution and 0.4–1 V power supply range. The ADC achieved 49.8 dB SNDR and the peak FoM of 3.4 fJ/conv. with 160 kS/sec at 0.4 V single power supply voltage. At 10 bit mode and 1 V operation, up to 10 MS/s, the FoM is below 10 fJ/conv. while keeping ENOB of 8.7 bit.

  • Self-Aligned Planar Metal Double-Gate Polycrystalline-Silicon Thin-Film Transistors Fabricated at Low Temperature on Glass Substrate

    Hiroyuki OGATA  Kenji ICHIJO  Kenji KONDO  Akito HARA  

     
    BRIEF PAPER-Semiconductor Materials and Devices

      Vol:
    E96-C No:2
      Page(s):
    285-288

    A multigate polycrystalline-silicon (poly-Si) thin-film transistor (TFT) is a recently popular topic in the field of Si devices. In this study, self-aligned planar metal double-gate poly-Si TFTs consisting of an embedded bottom metal gate, a top metal gate fabricated by a self-alignment process, and a lateral poly-Si film with a grain size greater than 2 µm were fabricated on a glass substrate at 550. The nominal field-effect mobility of an n-channel TFT is 530 cm2/Vs, and its subthreshold slope is 140 mV/dec. The performance of the proposed TFTs is superior to that of top-gate TFTs fabricated using equivalent processes.

  • Signal-Dependent Analog-to-Digital Conversion Based on MINIMAX Sampling

    Igors HOMJAKOVS  Masanori HASHIMOTO  Tetsuya HIROSE  Takao ONOYE  

     
    PAPER

      Vol:
    E96-A No:2
      Page(s):
    459-468

    This paper presents an architecture of signal-dependent analog-to-digital converter (ADC) based on MINIMAX sampling scheme that allows achieving high data compression rate and power reduction. The proposed architecture consists of a conventional synchronous ADC, a timer and a peak detector. AD conversion is carried out only when input signal peaks are detected. To improve the accuracy of signal reconstruction, MINIMAX sampling is improved so that multiple points are captured for each peak, and its effectiveness is experimentally confirmed. In addition, power reduction, which is the primary advantage of the proposed signal-dependent ADC, is analytically discussed and then validated with circuit simulations.

  • A Fast Link Delay Distribution Inference Approach under a Variable Bin Size Model

    Zhiyong ZHANG  Gaolei FEI  Shenli PAN  Fucai YU  Guangmin HU  

     
    LETTER

      Vol:
    E96-B No:2
      Page(s):
    504-507

    Network tomography is an appealing technology to infer link delay distributions since it only relies on end-to-end measurements. However, most approaches in network delay tomography are usually computationally intractable. In this letter, we propose a Fast link Delay distribution Inference algorithm (FDI). It estimates the node cumulative delay distributions by explicit computations based on a subtree-partitioning technique, and then derives the individual link delay distributions from the estimated cumulative delay distributions. Furthermore, a novel discrete delay model where each link has a different bin size is proposed to efficiently capture the essential characteristics of the link delay. Combining with the variable bin size model, FDI can identify the characteristics of the network-internal link delay quickly and accurately. Simulation results validate the effectiveness of our method.

  • Eigen Analysis of Space Embedded Equation in Moment Vector Space for Multi-Dimensional Chaotic Systems

    Hideki SATOH  

     
    PAPER-Nonlinear Problems

      Vol:
    E96-A No:2
      Page(s):
    600-608

    Multihigh-dimensional chaotic systems were reduced to low-dimensional space embedded equations (SEEs), and their macroscopic and statistical properties were investigated using eigen analysis of the moment vector equation (MVE) of the SEE. First, the state space of the target system was discretized into a finite discrete space. Next, an embedding from the discrete space to a low-dimensional discrete space was defined. The SEE of the target system was derived using the embedding. Finally, eigen analysis was applied to the MVE of the SEE to derive the properties of the target system. The geometric increase in the dimension of the MVE with the dimension of the target system was avoided by using the SEE. The pdfs of arbitrary elements in the target nonlinear system were derived without a reduction in accuracy due to dimension reduction. Moreover, since the dynamics of the system were expressed by the eigenvalues of the MVE, it was possible to identify multiple steady states that cannot be done using numerical simulation. This approach can thus be used to analyze the macroscopic and statistical properties of multi-dimensional chaotic systems.

  • Non-binary Pipeline Analog-to-Digital Converter Based on β-Expansion

    Hao SAN  Tomonari KATO  Tsubasa MARUYAMA  Kazuyuki AIHARA  Masao HOTTA  

     
    PAPER

      Vol:
    E96-A No:2
      Page(s):
    415-421

    This paper proposes a pipeline analog-to-digital converter (ADC) with non-binary encoding technique based on β-expansion. By using multiply-by-β switched-capacitor (SC) multiplying digital-to-analog converter (MDAC) circuit, our proposed ADC is composed by radix-β (1 < β < 2) 1 bit pipeline stages instead of using the conventional radix-2 1.5 bit/1 bit pipeline stages to realize non-binary analog-to-digital conversion. Also with proposed β-value estimation algorithm, there is not any digital calibration technique is required in proposed pipeline ADC. The redundancy of non-binary ADC tolerates not only the non-ideality of comparator, but also the mismatch of capacitances and the gain error of operational amplifier (op-amp) in MDAC. As a result, the power hungry high gain and wide bandwidth op-amps are not necessary for high resolution ADC, so that the reliability-enhanced pipeline ADC with simple amplifiers can operate faster and with lower power. We analyse the β-expansion of AD conversion and modify the β-encoding technique for pipeline ADC. In our knowledge, this is the first proposal architecture for non-binary pipeline ADC. The reliability of the proposed ADC architecture and β-encoding technique are verified by MATLAB simulations.

  • A Frequency-Domain Imaging Algorithm for Translational Invariant Bistatic Forward-Looking SAR

    Junjie WU  Jianyu YANG  Yulin HUANG  Haiguang YANG  Lingjiang KONG  

     
    PAPER-Sensing

      Vol:
    E96-B No:2
      Page(s):
    605-612

    With appropriate geometry configurations, bistatic Synthetic Aperture Radar (SAR) can break through the limitations of monostatic SAR for forward-looking imaging. Thanks to such a capability, bistatic forward-looking SAR (BFSAR) has extensive potential applications. This paper develops a frequency-domain imaging algorithm for translational invariant BFSAR. The algorithm uses the method of Lengendre polynomials expansion to compute the two dimensional point target reference spectrum, and this spectrum is used to perform the range cell migration correction (RCMC), secondary range compression and azimuth compression. In particular, the Doppler-centroid and bistatic-range dependent interpolation for residual RCMC is presented in detail. In addition, a method that combines the ambiguity and resolution theories to determine the forward-looking imaging swath is also presented in this paper.

  • An Adaptive Fairness and Throughput Control Approach for Resource Scheduling in Multiuser Wireless Networks

    Lin SHAN  Sonia AISSA  Hidekazu MURATA  Susumu YOSHIDA  Liang ZHAO  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E96-B No:2
      Page(s):
    561-568

    The important issue of an adaptive scheduling scheme is to maximize throughput while providing fair services to all users, especially under strict quality of service requirements. To achieve this goal, we consider the problem of multiuser scheduling under a given fairness constraint. A novel Adaptive Fairness and Throughput Control (AFTC) approach is proposed to maximize the network throughput while attaining a given min-max fairness index. Simulation results reveal that comparing to straightforward methods, the proposed AFTC approach can achieve the desired fairness while maximizing the throughput with short convergence time, and is stable in dynamic scenarios. The trade-off between fairness and throughput can be accurately controlled by adjusting the scheduler's parameters.

  • Sparsity and Block-Sparsity Concepts Based Wideband Spectrum Sensing

    Davood MARDANI NAJAFABADI  Masoud Reza AGHABOZORGI SAHAF  Ali Akbar TADAION  

     
    PAPER-Digital Signal Processing

      Vol:
    E96-A No:2
      Page(s):
    573-583

    In this paper, we propose a new method for wideband spectrum sensing using compressed measurements of the received wideband signal; we can directly separate information of the sub-channels and perform detection in each. Wideband spectrum sensing empowers us to rapidly access the vacant sub-channels in high utilization regime. Regarding the fact that at each time instant some sub-channels are vacant, the received signal is sparse in some bases. Then we could apply the Compressive Sensing (CS) algorithms and take the compressed measurements. On the other hand, the primary user signals in different sub-channels could have different modulation types; therefore, the signal in each sub-channel is chosen among a signal space. Knowing these signal spaces, the secondary user could separate information of different sub-channels employing the compressed measurements. We perform filtering and detection based on these compressed measurements; this decreases the computational complexity of the wideband spectrum sensing. In addition, we model the received wideband signal as a vector which has a block-sparse representation on a basis consisting of all sub-channel bases whose elements occur in clusters. Based on this feature of the received signal, we propose another wideband spectrum sensing method with lower computational complexity. In order to evaluate the performance of the proposed method, we employ the Monte-Carlo simulation. According to simulations if the compression rate is selected appropriately according to the CS theorems and the problem model, the detection performance of our method leads to the performance of the ideal filter bank-based method, which uses the ideal and impractical narrow band filters.

  • Multiplexing Technique of Radio-on-Fiber Signals Using Chromatic Dispersion Control

    Kensuke IKEDA  

     
    PAPER

      Vol:
    E96-C No:2
      Page(s):
    163-170

    In this paper, a novel interference suppression technique from added RoF (Radio-on-Fiber) system is proposed. In general RoF system, received RF (radio frequency) signal intensity is periodically varied depending on chromatic dispersion that is known as fading phenomenon. In proposed technique null points of this fading phenomenon are intentionally applied to minimize signal interferences. This technique can realize two types of multiplexing RoF signal. In the first configuration, a single optical carrier is modulated twice using two optical modulators connected in series. In second configuration, new RoF signal is added to the existing network using individual light source. Multiplexing RoF signals of 10 GHz-band with data of 30 Mbps 64QAM is experimentally demonstrated.

  • Semi-Supervised Nonparametric Discriminant Analysis

    Xianglei XING  Sidan DU  Hua JIANG  

     
    LETTER-Pattern Recognition

      Vol:
    E96-D No:2
      Page(s):
    375-378

    We extend the Nonparametric Discriminant Analysis (NDA) algorithm to a semi-supervised dimensionality reduction technique, called Semi-supervised Nonparametric Discriminant Analysis (SNDA). SNDA preserves the inherent advantages of NDA, that is, relaxing the Gaussian assumption required for the traditional LDA-based methods. SNDA takes advantage of both the discriminating power provided by the NDA method and the locality-preserving power provided by the manifold learning. Specifically, the labeled data points are used to maximize the separability between different classes and both the labeled and unlabeled data points are used to build a graph incorporating neighborhood information of the data set. Experiments on synthetic as well as real datasets demonstrate the effectiveness of the proposed approach.

  • Improved Seam Merging for Content-Aware Image Resizing

    Kazu MISHIBA  Masaaki IKEHARA  Takeshi YOSHITOME  

     
    PAPER-Image Processing and Video Processing

      Vol:
    E96-D No:2
      Page(s):
    349-356

    In this paper, we propose an improved seam merging method for content-aware image resizing. This method merges a two-pixel-width seam element into one new pixel in image reduction and inserts a new pixel between the two pixels in image enlargement. To preserve important contents and structure, our method uses energy terms associated with importance and structure. Our method preserve the main structures by using a cartoon version of the original image when calculating the structure energy. In addition, we introduce a new energy term to suppress the distortion generated by excessive reduction or enlargement in iterated merger or insertion. Experimental results demonstrate that the proposed method can produce satisfactory results in both image reduction and enlargement.

  • Low-Temperature Thermionic Emission from Diamond Micropowders with Sharp Edges

    Tomomi YOSHIMOTO  Tatsuo IWATA  

     
    BRIEF PAPER-Semiconductor Materials and Devices

      Vol:
    E96-C No:1
      Page(s):
    132-134

    The thermionic emission properties of diamond micropowders were investigated. The thermionic emission current was observed at a low temperature of 702 K, and a work function of approximately 1.97 eV was obtained. Band bending in diamond micropowders induced by an applied electric field had a considerable influence on decreasing the work function.

  • Asynchronous Receiver-Initiated MAC Protocol Exploiting Stair-Like Sleep in Wireless Sensor Networks

    Takahiro WADA  I-Te LIN  Iwao SASASE  

     
    PAPER-Network

      Vol:
    E96-B No:1
      Page(s):
    119-126

    We propose the asynchronous receiver-initiated MAC protocol with the stair-like sleep mode; each node reduces its own sleep time by the sleep-change-rate depending on the number of hops from the source to the sink in wireless sensor networks (WSNs). Using the stair-like sleep approach, our protocol achieves high delivery ratio, low packet delay, and high energy efficiency due to the reduction in idle listening time. Our protocol can formulate the upper bound of the idle listening time because of the feature that the sleep time decreases in a geometric progression, and the reduction of the idle listening time is obtained by using the stair-like sleep approach. In our proposed scheme, the sink calculates the sleep change rate based on the number of hops from the source to the sink. By using the control packets which have the role of the acknowledgment (ACK), our proposed protocol can achieve the stair-like sleep with no additional control packets. In addition, even in the network condition that multi-targets are detected, and the number of hops to the sink are changed frequently, our proposed protocol can change the sleep change rate adaptively because the sink can always obtain the number of hops from the source to the sink. Simulation results show that the proposed protocol can improve the performance in terms of the packet delivery ratio, the packet delay, and the energy efficiency compared to the conventional receiver-initiated MAC (RI-MAC) protocol.

  • Catching the Behavioral Differences between Multiple Executions for Malware Detection

    Takahiro KASAMA  Katsunari YOSHIOKA  Daisuke INOUE  Tsutomu MATSUMOTO  

     
    PAPER-System Security

      Vol:
    E96-A No:1
      Page(s):
    225-232

    As the number of new malware has increased explosively, traditional malware detection approaches based on pattern matching have been less effective. Therefore, it is important to develop a detection method which relies on not signatures but characteristic behaviors of malware. Recently, malware authors have been embedding functions for countermeasure against malware analyses and detections into malware. Accordingly, modern malware often changes their runtime behaviors in each execution to tolerate against malware analyses and detections. For example, when malware copies itself on a file system, it can randomly determine its file name for avoiding the detections. Another example is that when malware tries to connect its command and control server, it randomly chooses a domain name from a hard-coded domain name list to avoid being blocked by a static blacklist of malicious domain names. We assume that such evasive behaviors are unnecessary for benign software. Therefore the behaviors can be the clues to distinguish malware from benign software. In this paper, we propose a novel behavior-based malware detection method which focuses attention on such characteristics. Our proposed method conducts dynamic analysis on an executable file multiple times in same sandbox environment so as to obtain plural lists of API call sequences and plural traffic logs, and then compares the lists and the logs to find the difference between the multiple executions. In the experiments with 5,697 malware samples and 819 benign software samples, we can detect about 70% malware samples and the false positive rate is about 1%. In addition, we can detect about 50% malware samples which were not detected by each Anti-Virus Software engine. Therefore we confirm the possibility the proposed method may be able to improve the accuracy of malware detection utilizing in combination with other existing methods.

  • Message Recovery Signature Schemes from Sigma-Protocols

    Masayuki ABE  Tatsuaki OKAMOTO  Koutarou SUZUKI  

     
    PAPER-Public Key Based Protocols

      Vol:
    E96-A No:1
      Page(s):
    92-100

    In this paper, we present a framework to construct message recovery signature schemes from Sigma-protocols. The key technique of our construction is the redundancy function that adds some redundancy to the message only legitimately signed and recovered message can have. We provide a characterization of the redundancy functions that make the resulting message recovery signature scheme proven secure. Our framework includes known schemes when the building blocks are given concrete implementations, i.e., random oracles and ideal ciphers, hence presents insightful explanation to their structure.

  • Efficient Secure Auction Protocols Based on the Boneh-Goh-Nissim Encryption

    Takuho MITSUNAGA  Yoshifumi MANABE  Tatsuaki OKAMOTO  

     
    PAPER-Public Key Based Protocols

      Vol:
    E96-A No:1
      Page(s):
    68-75

    This paper presents efficient secure auction protocols for first price auction and second price auction. Previous auction protocols are based on a generally secure multi-party protocol called mix-and-match protocol based on plaintext equality tests. However, the time complexity of the plaintext equality tests is large, although the mix-and-match protocol can securely calculate any logical circuits. The proposed protocols reduce the number of times the plaintext equality tests is used by replacing them with the Boneh-Goh-Nissim encryption, which enables calculation of 2-DNF of encrypted data.

  • Adaptive Coupling Method Based on Optimal Subcarrier Spacing for OFDM System

    Yi WANG  Qianbin CHEN  Xing Zhe HOU  Hong TANG  Zufan ZHANG  Ken LONG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E96-B No:1
      Page(s):
    360-362

    Orthogonal frequency division multiplexing (OFDM) is very sensitive to the frequency errors caused by phase noise and Doppler shift. These errors will disturb the orthogonality among subcarriers and cause intercarrier interference (ICI). A simple method to combat ICI is proposed in this letter. The main idea is to map each data symbol onto a couple of subcarriers rather to a single subcarrier. Different from the conventional adjacent coupling and symmetric coupling methods, the frequency diversity can be utilized more efficiently by the proposed adaptive coupling method based on optimal subcarrier spacing. Numerical results show that our proposed method provides a robust signal-to-noise ratio (SNR) improvement over the conventional coupling methods.

4781-4800hit(16314hit)