The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] SI(16314hit)

15261-15280hit(16314hit)

  • The Influence of Oxygen Concentration on Contact Resistance Behaviours of Ag and Pd Materials in DC Breaking Arcs

    Zhuan-Ke CHEN  Keisuke ARAI  Koichiro SAWA  

     
    PAPER-Arcing Discharge and Contact Characteristics

      Vol:
    E77-C No:10
      Page(s):
    1647-1654

    The former experimental results have already shown that it is oxide films formed on contact surface causing the contact resistance to degrade in dc. breaking arcs for Ag and Pd materials. In order to understand the detailed information about it, the experiments are performed to break dc. inductive load at 20 V, 0.5 A and 1.0 A in nitrogen gas with different oxygen concentrations. The contact surface morphology and surface contamination are evaluated by SEM and AES, respectively. The tested results demonstrate that, for Ag contact, the severe oxidation occurs with increasing oxygen concentration, and the critical value of oxygen concentration is found to be about 10% and 5% in 0.5 A and 1.0 A, respectively, above those values the contact resistance degrades due to the oxide films formed on the contact surface, especially on the anode surface. While, for Pd contacts, a remarkable contact resistance degradation is not found even at 1.0 A in oxigen. Evidence shows that the arc duration, in particular the gaseous phase arc duration affects the anode oxidation, which in turn causes the significant fluctuation of contact resistance.

  • A Connection-Level Design of Multistage Nonblocking ATM Switches

    Supot TIARAWUT  Tadao SAITO  Hitoshi AIDA  

     
    PAPER-Switching and Communication Processing

      Vol:
    E77-B No:10
      Page(s):
    1203-1208

    It is desirable to design an ATM switch that is nonblocking at the connection level by using simple connection admission control (CAC) schemes. To accomplish this goal, it is necessary to consider the relationships between CAC, cell-level quality-of-services (QOS), and the structure of multistage switches as well as switch modules. In this paper, we formulate a framework to design a multistage nonblocking ATM switch. We show that if a switch has the property of the Sufficiency of Knowledge of External Loads (SKEL), i.e., the property that its cell-level performance is robust to the distribution of incoming traffic among all inputs, then the switch is also nonblocking at the connection-level by using a simplified CAC that guarantees QOS of a connection by controlling the aggregate loads on outputs. Furthermore, we show that a Clos three-stage network using SKEL switch modules and Multipath Self-Routing (MPSR) also has the SKEL property and is a nonblocking switching network that needs CAC only at its outputs. We also demonstrate a design of multistage nonblocking ATM switches with Knockout switch modules.

  • Object Oriented API for Operations System Development

    Kenji MINATO  Ikuo YODA  Nobuo FUJII  

     
    PAPER-Communication Systems and Transmission Equipment

      Vol:
    E77-B No:10
      Page(s):
    1209-1219

    ISO and ITU-T have developed the standard concept of the Telecommunications Management Network (TMN). This standard does not, however, specify interface implementation. The user requires an Application Programming Interface (API) that bridges user application and the TMN concept to construct a TMN-based application. This paper proposes an object oriented API (OOAPI) that is suitable for TMN-based operations system implementation. OOAPI is one interface of the Common Management Information Service Element (CMISE), and uses the Common Management Information Protocol (CMIP). OOAPI is composed of two C++ programming language constructs: Data Object and Interface object "M_User". The Data Object makes it easier for the user to access management information. The M_User provides a connection-less CMISE interface because the OOAPI handles CMIP association automatically. The M_User also provides MO location-transparency by using the OSI Directory Service. This paper compares the existing MO location-transparency schemes with the OOAPI method, and clarifies the advantages of OOAPI. This paper also indicates results from OOAPI trials, and confirms that OOAPI has sufficient performance to implement highly effective TMN operations system.

  • Modeling Contact Erosion Using Object-Oriented Technology

    Kunio OHNO  

     
    PAPER-Simulation and AI-Technology

      Vol:
    E77-C No:10
      Page(s):
    1606-1613

    The prediction of a relay contact's life is still very important for support and maintenance of the Crossbar Switching Systems. It was found through surveys and experiments that the protected shower arc is the main reason for switching-relay contact erosion at existing Crossbar Switching Systems, if the contacts were not heavily activated. If the contacts were heavily activated, a long sustained steady arc might occur and severely erode the contacts. This paper proposes an arch energy estimation method for the prediction of contact erosion using object-oriented simulation technology when a steady arc occurs at protected contacts. The arc energy is expressed in a simulation model through analysis, and the model was confirmed through experimentation. The simulation model was used for building block programs of an expert system to predict the life span of switching relays in the existing Crossbar Switching Systems.

  • Significant Decrease in Thickness of Contaminant Films and Contact Resistance by Humidification

    Terutaka TAMAI  Tetsushi KAWANO  

     
    PAPER-Contact Reliability

      Vol:
    E77-C No:10
      Page(s):
    1614-1620

    On the surface of contacts which are exposed to the atmosphere, the reaction with gases in the atmosphere produces contaminant films including oxides. The contact reliability is degraded by the contaminant films. Humidity in the atmospheric environment also influences on the surface of contacts. However, influence of humidity on the surface has not been clarified. In the present paper, influence of humidity on the Cu surface and the oxides (CuO + Cu2O) on it were studied with respect to the thickness of the oxide film and contact resistance characteristics both for static and for sliding contacts. The thickness was measured by ellipsometric analysis. Topographic image affected by humidification was also observed by scanning tunneling microscope (STM). In the atmospheric environment, the clean surface of Cu was found to oxidize with fluctuations of the thickness for lapse of exposure time due to the fluctuations of the humidity. It was also found that the thickness of the oxide film decreases immediately after the humidification, and increases under dehumidification. Changes in contact resistance affected by humidity was corresponding to the change in the film thickness. Immediately after humidification contact resistance decreased, and increased with dehumidification both for static and for sliding contacts. For the mechanism of the influence of humidity on the oxide, chemical reduction of hydrogen generated by decomposition of the absorbed water molecule (H2O) was derived. The clean Cu surface was oxidized by oxygen due to absorbed water molecule and atmosphere.

  • A MRF-Based Parallel Processing for Speech Recognition Using Linear Predictive HMM

    Hideki NODA  Mehdi N. SHIRAZI  Mamoru NAKATSUI  

     
    PAPER-Speech Processing

      Vol:
    E77-D No:10
      Page(s):
    1142-1147

    Parallel processing in speech recognition is described, which is carried out at each frame on time axis. We have already proposed a parallel processing algorithm for HMM (Hidden Markov Model)-based speech recognition using Markov Random Fields (MRF). The parallel processing is realized by modeling the hidden state sequence by an MRF and using the Iterated Conditional Modes (ICM) algorithm to estimate the optimal state sequence given an observation sequence and model parameters. However this parallel processing with the ICM algorithm is applicable only to the standard HMM but not to the improved HMM like the linear predictive HMM which takes into account the correlations between nearby observation vectors. In this paper we propose a parallel processing algorithm applicable to the correlation-considered HMM, where a new deterministic relaxation algorithm called the Generalized ICM (GICM) algorithm is used instead of the ICM algorithm for estimation of the optimal state sequence. Speaker independent isolated word recognition experiments show the effectiveness of the proposed parallel processing using the GICM algorithm.

  • Theory of Chemical Waveguides

    Kazuya HAYATA  Masanori KOSHIBA  

     
    LETTER-Electromagnetic Theory

      Vol:
    E77-C No:10
      Page(s):
    1706-1709

    We predict that chemical waves can propagate as a guided mode in a reaction-diffusion system that consists of two regions with different wave speeds. In comparison with electromagnetic waveguides, unique features of the guided chemical waves can be seen in their dispersion characteristics. Conditions for supporting lowest-loss guided waves are discussed.

  • Optimization of Multiple-Valued Logic Functions Based on Petri Nets

    Ali Massoud HAIDAR  Mititada MORISUE  

     
    PAPER

      Vol:
    E77-A No:10
      Page(s):
    1607-1616

    This paper presents a novel and successful optimization algorithm for optimizing Multiple-valued Logic (MVL) functions based on Petri net theory. Mathematical properties and Petri net modeling tools to implement MVL systems are introduced. On the basis of these properties and modeling tools, the optimization algorithm can synthesize, analyze and minimize an arbitrary quaternary logic function of n-input variables. The analysis technique of optimization algorithm is a well-established concept from both theories of MVL and Petri nets, and this can be applied to specify and optimize any MVL Petri net system. In this paper, Petri nets of Galois field have been proposed in order to form a complete system, which can be used to realize and construct VLSI circuit of any MVL function. Based on the Petri nets of Galois field and the proposed algorithm, the quaternary minimum and maximum functions have been analyzed, minimized, and designed. These applications have demonstrated the usefulness of optimization algorithm. Based on Petri net theory, the analysis revealed important information about MVL Petri net modeled systems, where this information has been used to evaluate the modeled system and suggest improvements or changes. For evaluation, advantages of the proposed method over a conventional logic minimization method are presented. Also, we have observed that the MVL Petri nets have the following advantages: Designers can exhibit clearly, simply and systematically any complex MVL Petri net nodel, number of concurrent operations is increased, number of places and transitions that are needed to realize a MVL model is very small, and the interconnection problems can be greatly reduced.

  • A Petri Net Model for Nonmonotonic Reasoning Based on Annotated Logic Programs

    Chuang LIN  Tadao MURATA  

     
    INVITED PAPER

      Vol:
    E77-A No:10
      Page(s):
    1579-1587

    Nonmonotonic reasoning is a logical inference system which attempts to approximate human commonsense reasoning and is characterized as defeasible: having reasonably drawn a conclusion from some premises we may be forced to retract that conclusion upon learning new facts. This paper introduces a Petri net model for nonmonotonic reasoning with nonmonotonic rules generated by annotated logic programs and the unless operator. In the Petri net model, a fixpoint of a nonmonotonic theory can be represented as a maximal and consistent support of a firing sequence. We propose a structural method for finding extensions (coherent consequences) for a given set of nonmonotonic logic rules. It is based on the T-invariant technique for testing fireability of a goal transition in the Petri net model of Horn clause logic programs.

  • Contact Resistance between Plated Conductors and Current Density Distribution in a Contact Spot

    Isao MINOWA  Mitsunobu NAKAMURA  

     
    PAPER-Simulation and AI-Technology

      Vol:
    E77-C No:10
      Page(s):
    1592-1596

    Plating is applied to protect contact surfaces of contact devices such as switch, relay and connector from contaminations of oxidization and sulfuration etc. Furthermore it is known that the contact resistance can be reduced when there exist plated layers on the contact surfaces which have enough thickness and low resistivity compared with substratum materials. In this paper, contact resistance between plated conductors are calculated using three dimensional finite element method. Similariry, current density distribution in a contact spot with various resistivity of plated layers are shown and relative conductance depends on the contact area fraction with thickness of plated layers are presented.

  • Estimation of 3-D Motion from Optical Flow with Unbiased Objective Function

    Norio TAGAWA  Takashi TORIU  Toshio ENDOH  

     
    PAPER-Image Processing, Computer Graphics and Pattern Recognition

      Vol:
    E77-D No:10
      Page(s):
    1148-1161

    This paper describes a noise resistant algorithm for estimating 3-D rigid motion from optical flow. We first discuss the problem of constructing the objective function to be minimized. If a Gaussian distribution is assumed for the niose, it is well-known that the least-squares minimization becomes the maximum likelihood estimation. However, the use of this objective function makes the minimization procedure more expensive because the program has to go through all the points in the image at each iteration. We therefore introduce an objective function that provides unbiased estimators. Using this function reduces computational costs. Furthermore, since good approximations can be analytically obtained for the function, using them as an initial guess we can apply an iterative minimization method to the function, which is expected to be stable. The effectiveness of this method is demonstrated by computer simulation.

  • A Method to Validate the Correctness of Test Logic Programs Applied in a Protocol Conformance Test System Using Petri Nets

    Hiroto SUZUKI  Kohkichi TSUJI  Tetsuo ARAKI  Osamu TAKAHASHI  Shizuo YOSHITAKE  

     
    PAPER

      Vol:
    E77-A No:10
      Page(s):
    1663-1671

    As to the method of multi-layer testing, up to now, the testing system (called PROVES) which testes effectively each N-layer protocol implement of SUT (System Under Test) using the functions of derail-points located between N-layer and (N+1)-layer protocol implements in a test system has been proposed. The test logic programs, which are embedded in the derail-points of the test system, play an important role to realize the protocol error test sequences in the test system. Namely, they modify, add, or delete the correct protocol commands/responses output from the protocol implement part of the lest system, sends these erroneous commands/responses to SUT and observes the output from SUT. This paper proposes the method of validating the correctness of test logic program using the structural properties of Petri nets without coding the test logic programs, where correctness means that the desired output can be obtained by sending or receiving the commands/responses within a constant time under the initial conditions determined uniquely by the test system and SUT. According to our experiment, it is seen that almost all of the logical errors included in the test logic programs used for the experiment can be detected by this method.

  • A New Approach for Protocol Synthesis Based on LOTOS

    Bhed Bahadur BISTA  Zixue CHENG  Atsushi TOGASHI  Norio SHIRATORI  

     
    PAPER

      Vol:
    E77-A No:10
      Page(s):
    1646-1655

    In communication protocols, the behaviour of a protocol entity is related to the behaviour of another protocol entity as they communicate under sets of communication rules (protocols). Thus, it is desirable to concentrate on the design of one protocol entity and generate the corresponding protocol entity automatically. Furthermore, it is desirable that the protocol is formal, precise and unambiguous that is, it is described using FDTs (Formal Description Techniques). In this paper, we propose a protocol synthesis algorithm in which, from a LOTOS specification of a single given entity, LOTOS specification of the corresponding peer entity is generated automatically. Unlike previous works, where FSMs (Finite State Machines) were used to synthesize protocols, we use LOTOS, which is one of FDTs developed by ISO, in our proposed synthesis algorithm. We prove that the generated protocol is logical errors free, collectively represented as deadlock free, if the given entity is in certain forms which are natural in the context of connunication protocols.

  • Eigenvalue Bounds for a Certain Class of Interval Matrices

    Takehiro MORI  Hideki KOKAME  

     
    LETTER-Control and Computing

      Vol:
    E77-A No:10
      Page(s):
    1707-1709

    It is shown that for a class of interval matrices we can estimate the location of eigenvalues in a very simple way. This class is characterized by the property that eigenvalues of any real linear combination of member matrices are all real and thus includes symmetric interval matrices as a subclass. Upper and lower bounds for each eigenvalue of such a class of interval matrices are provided. This enables us to obtain Hurwitz stability conditions and Schur ones for the class of interval matrices and positive definiteness conditions for symmetric interval matrices.

  • Reduced State Space Generation of Concurrent Systems Using Weak Persistency

    kunihiko HIRAISHI  

     
    PAPER

      Vol:
    E77-A No:10
      Page(s):
    1602-1606

    State space explosion is a serious problem in analyzing discrete event systems that allow concurrent occurring of events. A new method is proposed for generating reduced state spaces of systems. This method is an improvement of Valmari's stubborn set method. The generated state space preserves liveness, livelocks, and terminal states of the ordinary state space. Petri nets are used as a model of systems, and a method is shown for generating a reduced state space from a given Petri net.

  • Self-Holding Optical Switch Using Optical Matrix Board

    Shuichiro INAGAKI  Yoriko HANAOKA  Tsuneo KANAI  

     
    PAPER-Connectors: Optical and Conventional

      Vol:
    E77-C No:10
      Page(s):
    1553-1558

    A new self-holding optical switch that consists of an optical matrix board and a precision robot is proposed. Fabrication and evaluation of 33 optical matrix boards confirm the feasibility of large-size optical switching. Suppressing deviations in the groove position will realize lower loss optical matrix boards in the near future. The apparent roughness of the groove walls can be evaluated simply and effectively by measuring return loss with an interferometric optical-time-domain reflectometer.

  • On Quadratic Convergence of the Katzenelson-Like Algorithm for Solving Nonlinear Resistive Networks

    Kiyotaka YAMAMURA  

     
    PAPER-Nonlinear Circuits and Systems

      Vol:
    E77-A No:10
      Page(s):
    1700-1706

    A globally and quadratically convergent algorithm is presented for solving nonlinear resistive networks containing transistors modeled by the Gummel-Poon model or the Shichman-Hodges model. This algorithm is based on the Katzenelson algorithm that is globally convergent for a broad class of piecewise-linear resistive networks. An effective restart technique is introduced, by which the algorithm converges to the solutions of the nonlinear resistive networks quadratically. The quadratic convergence is proved and also verified by numerical examples.

  • Measuring the Student Knowledge State in Concept Learning: An Approximate Student Model

    Enrique Gonzalez TORRES  Takeshi IIDA  Shigeyoshi WATANABE  

     
    PAPER-Artificial Intelligence and Cognitive Science

      Vol:
    E77-D No:10
      Page(s):
    1170-1178

    Among the problems that face ITS designers, the problem of measuring the student knowledge state after concept learning in order to initially adapt a skill acquisition session according to a student's own necessities is a hard one. Typical approaches are the use of some sort of test to assess the student knowledge and choose an initial set of parameters for a session, or use, regardless the particular necessities of a student, a pre-defined set of initial parameters. We consider the fromer to be disrupting for learning and the latter too simple to deal with the broad possibilities that are faced. It is known that students show different behaviors during concept learning depending on the experience, background and actual understanding (the way a student is understanding a concept) during concept learning. Our approach here is to classify the different behaviors through fuzzy proposition and link them with a student model through fuzzy rules to use in an expert system, and with it, select the most suitable problem-solving strategy for each particular student in order to clear his misunderstandings and facilitate the learning of problem-solving skills. The use of probabilistic reasoning (i.e. Bayesian statistics) instead of fuzzy logic is not suitable for the present situation because of the rigidity and precision of the rules that do not allow a proper manipulation of the vagueness involved in the student behavior. We apply this idea to a circuit analysis ITS where the concept learning session is carried out on a Hypertext environment and the skill acquisition session on an interactive problem-solving environment. By tracing the student use of the Hypertext environment we can know the student behavior and use it as a premise in the fuzzy inference.

  • A Pattern Classifier--Modified AFC, and Handwritten Digit Recognition

    Yitong ZHANG  Hideya TAKAHASHI  Kazuo SHIGETA  Eiji SHIMIZU  

     
    PAPER-Artificial Intelligence and Cognitive Science

      Vol:
    E77-D No:10
      Page(s):
    1179-1185

    We modified the adaptive fuzzy classification algorithm (AFC), which allows fuzzy clusters to grow to meet the demands of a given task during training. Every fuzzy cluster is defined by a reference vector and a fuzzy cluster radius, and it is represented as a shape of hypersphere in pattern space. Any pattern class is identified by overlapping plural hyperspherical fuzzy clusters so that it is possible to approximate complex decision boundaries among pattern classes. The modified AFC was applied to recognize handwritten digits, and performances were shown compared with other neural networks.

  • Effect of SiF4/SiH4/H2 Flow Rates on Film Properties of Low-Temperature Polycrystalline Silicon Films Prepared by Plasma Enhanced Chemical Vapor Deposition

    Mikio MOHRI  Hiroaki KAKINUMA  Taiji TSURUOKA  

     
    PAPER-Semiconductor Materials and Devices

      Vol:
    E77-C No:10
      Page(s):
    1677-1684

    We have studied in detail the effect of gas flow rates on the film properties of low-temperature (300) polycrystalline silicon (poly-Si) films prepared by conventional plasma enhanced chemical vapor deposition (13.56 MHz) with SiF4/SiH4/H2 gases. The effect of SiH4 flow rate on crystallization is shown to be large. A small amount of SiH4 with high SiF4 and H2 flow rates (50[H2]/[SiH4]1200, 20[SiF4]/[SiH4]150, 1[H2]/[SiF4]16) is important to form poly-Si films. The poly-Si films deposited under such optimized conditions had shown preferential 〈110〉-orientation and the crystalline fraction is estimated to be more than 80%. The deposition rates are in the range of 5-30 nm/min. The conductivity is in the range of 10-8-10-6 S/cm. Further, the electrical conduction indicates an activation type, and the activation energy is in the range of 0.5-0.6 eV.

15261-15280hit(16314hit)