The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] SI(16314hit)

15081-15100hit(16314hit)

  • A Method for Reducing Power Consumption of CMOS Logic Based on Signal Transition Probability

    Kunihiro ASADA  Junichi AKITA  

     
    PAPER-DA/Architecture

      Vol:
    E78-C No:4
      Page(s):
    436-440

    Some CMOS gates are topologically asymmetric in inputs, even though they are logically symmetric. It implies a possibility to reduce power consumption by optimizing signal assignment to the inputs. In this study we theoretically derive power consumption of 2-input NAND gate based on transition probability of input signals, with taking into account charging current due to an internal node. We also propose a signal assignment method to input terminals for reducing power consumption reduction by extending our method for large circuits, and demonstrate the effect of power consumption reduction by the present method.

  • On Ternary Cellular Arrays Designed from Ternary Decision Diagrams

    Naotake KAMIURA  Hidetoshi SATOH  Yutaka HATA  Kazuhara YAMATO  

     
    PAPER-Computer Hardware and Design

      Vol:
    E78-D No:4
      Page(s):
    326-335

    In this paper, we propose a method to design ternary cellular arrays by using Ternary Decision Diagrams (TDD's). Our cellular array has a rectangular structure composed of ternary switch cells. The ternary functions represented by TDD's are realized by mapping the TDD's to the arrays directly. That is, both the nodes and the edges in the TDD are realized by some sets of the cells. Since TDD's can represent easily multiple-output functions without large memory requirements, our arrays are wuitable for the realization of multiple-output functions. To evaluate our method, we apply our method to some benchmark circuits, and compare our arrays with the ternary PLA's. The experimental results show that our arrays have the advantage for their sizes, especially in the realization of symmetric functions. The results also clarify that the size of our arrays depends on the size of TDD's.

  • A Monolithic GaAs Linear Power Amplifier Operating with a Single Low 2.7-V Supply for 1.9-GHz Digital Mobile Communication Applications

    Masami NAGAOKA  Tomotoshi INOUE  Katsue KAWAKYU  Shuichi OBAYASHI  Hiroyuki KAYANO  Eiji TAKAGI  Yoshikazu TANABE  Misao YOSHIMURA  Kenji ISHIDA  Yoshiaki KITAURA  Naotaka UCHITOMI  

     
    PAPER-Analog Circuits

      Vol:
    E78-C No:4
      Page(s):
    424-429

    A monolithic linear power amplifier IC operating with a single low 2.7-V supply has been developed for 1.9-GHz digital mobile communication systems, such as the Japanese personal handy phone system (PHS). Refractory WNx/W self-aligned gate GaAs power MESFETs have been successfully developed for L-band power amplification, and this power amplifier operates with high efficiency and low distortion at a low voltage of 2.7 V, without any additional negative voltage supply, by virtue of small drain knee voltage, high transconductance and sufficient breakdown voltage of the power MESFET. An output power of 23.0 dBm and a high power-added efficiency of 30.8% were attained for 1.9-GHz π/4-shifted QPSK (quadrature phase shift keying) modulated input when adjacent channel leakage power level was less than -60 dBc at 600 kHz apart from 1.9 GHz.

  • An Analysis of Traceability in Requirements Documents

    Kenji TAKAHASHI  Shuichiro YAMAMOTO  

     
    PAPER-Software Systems

      Vol:
    E78-D No:4
      Page(s):
    394-402

    We study the correspondence between problem descriptions and requirements specification documents derived from them. Based on the results of this investigation, a model that integrates the problem space and the requirements specification space is developed. This integration is based on a semantic network representation. We also propose a model of the requirements elicitation process that is consistent with our empirical studies of traceability in requirements documents. In this process, analysts derived requirements specifications from incomplete and ambiguous problem descriptions given by customers, identify missing information, completed it, and then decide the system boundaries that define which part of the problem descriptions to implement as the target system. The model can be used to complete problem descriptions given by customers and determine the system boundaries.

  • The Optimal Routing Algorithm in Hierarchical Cubic Network and Its Properties

    San-Kyun YUN  Kyu Ho PARK  

     
    PAPER-Computer Networks

      Vol:
    E78-D No:4
      Page(s):
    436-443

    A Hierarchical Cubic Network (HCN) is a hierarchical hypercube network proposed by Ghose. The HCN is topologically superior to many other similar networks, in particular, the hypercube. It has a considerably lower diameter than a comparable hypercube and is realized using almost half the number of links per node as a comparable hypercube. In this paper, we propose the shortest routing algorithm in HCN(n, n) and show that the diameter of HCN(n, n) with 22n nodes is n(n1)/31 which is about 2/3 of that of a comparable hypercube. We also propose the optimal routing algorithm in HCN(m, n) where mn and obtain that its diameter is n(m1)/31. Typical parallel algorithms run in HCN(m, n) with the same time complexity as a hypercube and the hypercube topology can be emulated with O(1) time complexity in it.

  • An Automatic Selection Method of Key Search Algorithms

    Masami SHISHIBORI  Junichi AOE  Ki-Hong PARK  Hisatoshi MOCHIZUKI  

     
    PAPER-Software Systems

      Vol:
    E78-D No:4
      Page(s):
    383-393

    The selection of an appropriate key search algorithm for a specific application field is an important issue in application systems development. This is because data retrieval is the most time-consuming part of many application programs. An automatic selection method for key search algorithms is presented in this paper. The methodology has been implemented in a system called KESE2 (KEy-SEarch ALgorithm SElection). Key search algorithms are selected according to the user's requirements through interaction with KESE2 which bases its inferences on an evaluation table. This evaluation table contains values rating the performance of each key search algorithm for the different searching properties, or characteristics. The selection algorithm presented is based on step by step reduction of unsuitable key search algorithms and searching properties. The paper also proposes assistance facilities that consist of both a support function and a program synthesis function. Experimental results show that the appropriate key search algorithms are effectively selected, and that the necessary number of questions asked, to select the appropriate algorithm, is reduced to less than half of the total number of possible questions. The support function is useful for the user during the selection process and the program synthesis function fully translates a selected key search algorithm into high level language in an average of less than 1 hour.

  • Enhanced Two-Level Optical Resonance in Spherical Microcavities

    Kazuya HAYATA  Tsutomu KOSHIDA  Masanori KOSHIBA  

     
    PAPER-Electromagnetic Theory

      Vol:
    E78-C No:4
      Page(s):
    454-461

    A self-induced-transparent (SIT) system that takes advantage of morphology dependent resonances (MDR's) in a Mie-sized microsphere doped with a resonant material is proposed. The present system is doubly resonant: one has microscopic origin (the two-level system), while the other has macroscopic origin (the MDR). In this geometry, owing to the feedback action of MDR's, the pulse area can be much expanded, and thus the electric-field amplitude of the incident pulse can be reduced substantially compared with the conventional one-way SIT propagation. Theoretical results that incorporate dephasing due to structural imperfections are shown.

  • A Mixed Photonic/Electronic Circuit Simulation Including Transient Noise Sources

    Eiichi SANO  Mikio YONEYAMA  

     
    PAPER-Opto-Electronics

      Vol:
    E78-C No:4
      Page(s):
    447-453

    Device models for a laser diode, photodetector, MESFET, HEMT, bipolar transistor, diode, and resistor are proposed and are implemented in a commercial mixed-signal simulator along with models for an optical fiber, an external optical modulator, and a pulse pattern generator. The validity of the models is confirmed by comparing simulated and experimental results. The performance of a mixed photonic/electronic circuit, which is determined by a large-signal waveform and the device noises, is estimated by the present analysis method.

  • A Compact, High-Efficiency, High-Power DC-DC Converter

    Katsuhiko YAMAMOTO  Tomoji SUGAI  Koichi TANAKA  

     
    PAPER-Power Supply

      Vol:
    E78-B No:4
      Page(s):
    608-615

    A 10-kW (53V/200A), forced-air-cooled DC-DC converter has been developed for fuel cell systems. This converter uses new high-voltage bipolar-mode static induction transistors (BSIT), a new driving method, a zero-voltage-switched pulse-width-modulation technique, and a new litz wire with low AC resistance. It weighs only 16.5kg, has a volume of 26,000cm3, operates at 40kHz, and has a power conversion efficiency of about 95%. The power loss of this converter is 20% less than that of conventional natural-air-cooled DC-DC converters, and the power density is 3 times as high.

  • High-Speed High-Density Self-Aligned PNP Technology for Low-Power Complementary Bipolar ULSIs

    Katsuyoshi WASHIO  Hiromi SHIMAMOTO  Tohru NAKAMURA  

     
    PAPER-Device Technology

      Vol:
    E78-C No:4
      Page(s):
    353-359

    A high-speed high-density self-aligned pnp technology for complementary bipolar ULSIs has been developed to achieve high-speed and low-power performance simultaneously. It is fully compatible with the npn process. A low sheet-resistance p+ buried layer and a low sheet-resistance extrinsic n+ polysilicon layer with U-grooved isolation enable the transistor size to be scaled down to about 20 µm2. Current gain of 85 with 4-V collector-emitter breakdown voltage was obtained without any leakage current arising from emitter-base forward tunneling or recombination, which indicates no extrinsic base encroachment problem. A shallow emitter junction depth of 45 nm and narrow base width of 30 nm, obtained by utilizing an optimized retrograded p-well, an arsenic-implanted intrinsic base, and emitter diffusion from BF2-implanted polysilicon, improve the maximum cutoff frequency to 35 GHz. The power dissipation of the pnp pull-down complementary emitter-follower ECL circuit with load capacitances is calculated to be reduced to 20-40% of a conventional ECL circuit.

  • Network Hierarchies and Node Minimization

    Robert K. BRAYTON  Ellen M. SENTOVICH  

     
    INVITED PAPER-Logic Synthesis

      Vol:
    E78-D No:3
      Page(s):
    199-208

    Over the last decade, research in the automatic synthesis and optimization of combinational logic has matured significantly; more recently, research has focused on sequential logic. Many of the paradigms for combinational logic have been extended and applied in the sequential domain. In addition, promising new directions for future research are being explored. In this paper, we survey some of the results of combinational synthesis and some recent results for sequential synthesis and then use these to view possible avenues for future sequential synthesis research. In particular we look at two related questions: deriving a set of permissible behaviors and using a minimizer to select the best behavior according to some optimization criteria. We examine these two issues in increasingly complex situations starting with a single-output function, and proceeding to a single multiple-output function, a network of single-output functions, a network of multiple-output functions, and then similar questions where function" is replaced by a finite state machine (FSM). We end with a discussion of a network of finite state machines and the problem of deriving the set of permissible FSM's and choosing a representative minimum one.

  • Test Synthesis from Behavioral Description Based on Data Transfer Analysis

    Mitsuteru YUKISHITA  Kiyoshi OGURI  Tsukasa KAWAOKA  

     
    LETTER

      Vol:
    E78-D No:3
      Page(s):
    248-251

    We developed a new test-synthesis that operates method based on data transfer analysis at the language level. Using this method, an efficient scan path is inserted to generate test data for the sequential circuit by using only a test generation tool for the combinatorial circuit. We have applied this method successfully to the behavior, logic, and test design of a 32-bit, RISC-type processor. The size of the synthesized circuit without test synthesis is 23,407 gates; the size with test synthesis is 24,811 gates. This is an increase of only a little over 6%.

  • A New Algorithm for Boolean Matching Utilizing Structural Information

    Yusuke MATSUNAGA  

     
    PAPER-Logic Synthesis

      Vol:
    E78-D No:3
      Page(s):
    219-223

    The paper describes a new algorithm for Boolean matching, which is based on BDD structure manipulation. Pruning of the search space takes place after partial assignments if certain subgraphs of two BDD's become inequivalent. This pruning is different from existing techniques, so that the search space is further reduced. Another feature of this algorithm is topological filtering. Usually, many functions have no matchings and this is easily found by only counting the number of minterms. To check it quickly, upper and lower bounds of minterm count are calculated from topological information. Using these bounds, functions that have no matchings are discarded without building their BDD's.

  • A Flexible and Low-Cost ASIC Line Management Technology Taking Operator's Skill-Level as a Scheduling-Factor into Consideration

    Tetsuma SAKURAI  Satoshi TAZAWA  Eisuke ARAI  

     
    PAPER

      Vol:
    E78-C No:3
      Page(s):
    236-240

    A flexible and low-cost menagement technology is desired for fabrication line of both ASICs and cutting edge LSIs. To meet such desire, a management technology named "super operator shifts" has been proposed. After taking operator's skill level into consideration, an ASIC line manager can stretch line working time by use of the super operator shifts. It results that he can successfully get 3-shifts turn around time for severe-delivery-date lots with a payment equal to about 2-shifts line-cost.

  • Suitable Conditions for Connections through the Plated Through Hole of Printed Circuit Boards

    Hiroki OKA  Nobuaki SUGIURA  Kei-ichi YASUDA  

     
    PAPER-Components

      Vol:
    E78-C No:3
      Page(s):
    304-310

    B-ISDN telecommunication systems will require signal processing speeds up to 600 Mbps or more. We must therefore consider the affects of signal reflection, signal attenuation, time dalay, and so on when designing these systems. The higher the signal speed, the larger the electrical noise induced around the connector, especially in the plated through holes (PTHs) area. This paper presents the results of our investigation focused on connector mounting configurations in the signal transmission line, especially whether or not signals transmit through the PTH in a printed circuit board (PCB). How the signal reflection characteristics depend upon transmission line configurations are discussed and experimental results and simulation analyses for a transmission line system using a small miniature A-type (SMA) connector as an example are performed. It is suggested that designs for future high-speed signal transmission circuits take into account the PTH diameter and/or the PTH pitch conditions, values for which can be determined from simulation analysis.

  • Register-Transfer Module Selection for Sub-Micron ASIC Design

    Vasily G. MOSHNYAGA  Yutaka MORI  Keikichi TAMARU  

     
    LETTER

      Vol:
    E78-D No:3
      Page(s):
    252-255

    In order to shorten the time-to-market, Application-Specific Integrated Circuits (ASIC's) are designed from a library of pre-defined layout implementations for register-transfer modules such as multipliers, adders, RAM, ROM, etc. Current approaches to selecting the implementations from the library usually deal with their timing-area estimates and do not consider delay of the intermodule wiring. However, as sub-micron design rules are utilized for IC fabrication, wiring delay becomes comparable to the functional unit delay and can not longer be ignored even in register-transfer synthesis. In this paper we propose an algorithm that combines module selection with Performance-Driven module placement and reduces an impact of wiring on sub-micron ASIC performance. The algorithm not only efficiently exploits multiple module realizations in the design library, but also finds the module placement which minimizes wiring delay. Experimental results on several benchmarks show that considering both module and wiring issues, more than 30% reduction of the total circuit delay can be achieved.

  • Classification of Document Image Blocks Using MCR Stroke Index

    AbdelMalek B.C. ZIDOURI  Supoj CHINVEERAPHAN  Makoto SATO  

     
    LETTER-Image Processing, Computer Graphics and Pattern Recognition

      Vol:
    E78-D No:3
      Page(s):
    290-294

    In this paper we introduce a new feature called stroke index for document image analysis. It is based on the minimum covering run expression method (MCR). This stroke index is a function of the number of horizontal and vertical runs in the original image and of number of runs by the MCR expression. As document images may present a variety of patterns such as graph, text or picture, it is necessary for image understanding to classify these different patterns into categories beforehand. Here we show how one could use this stroke index for such applications as classification or segmentation. It also gives an insight on the possibility of stroke extraction from document images in addition to classifying different patterns in a compound image.

  • Symbolic Scheduling Techniques

    Ivan P. RADIVOJEVI  Forrest BREWER  

     
    PAPER-High-Level Synthesis

      Vol:
    E78-D No:3
      Page(s):
    224-230

    This paper describes an exact symbolic formulation of resource-constrained scheduling which allows speculative operation execution in arbitrary forward-branching control/data paths. The technique provides a closed-form solution set in which all satisfying schedules are encapsulated in a compressed OBDD-based representation. An iterative construction method is presented along with benchmark results. The experiments demonstrate the ability of the proposed technique to efficiently extract parallelism not explicitly specified in the input description.

  • An On-Line Scheduler for ASIC Manufacturing Line Management

    Tadao TAKEDA  Satoshi TAZAWA  Kou WADA  Eisuke ARAI  

     
    PAPER

      Vol:
    E78-C No:3
      Page(s):
    241-247

    An on-line scheduler for ASIC manufacturing line management has been developed. The parameters in the schedule models and the dynamic priority curve in the schedule algorithm were adjusted to obtain schedules well-suited to practical ASIC line management and control. The scheduler is connected to the user interface control module of our ASIC CIM system. In order to facilitate on-line scheduling, we clarify the performance requirements of the computer used for the scheduler with respect to the line scale. Using a current EWS, the scheduler can easily make a one-day schedule for a small-scale line with an annual throughput of less than 1,000 lots within 10 minutes. To cope with larger-scale lines, the multiple scheduling method allows schedules to be produced quickly and efficiently. Therefore, the scheduler can respond flexibly to changes in production plan and line resources and the control delivery date of each lot.

  • Contact Resistance of Composite Material Contacts

    Yoshitada WATANABE  

     
    LETTER-Components

      Vol:
    E78-C No:3
      Page(s):
    315-317

    This is an attempt to examine the contact resistance of a composite material which is used for sliding contacts. The composite material used here is sintered by dispersing the solid lubricant WS2 into the metallic base alloy Cu-Sn. A method based on Greenwood's formula is applied to determine how the calculated values are related to the contact resistance values obtained in our experiments. As a result, the composite material mated with the carbon specimen is found nearly to corresponds to the values of those calculated by the extended Greenwood's formula, whereas its value mated with the tungsten specimen does not. In short, it is concluded that the composite material mated with the carbon specimen consists of multispots.

15081-15100hit(16314hit)