The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] TE(21534hit)

3221-3240hit(21534hit)

  • Multi-Group Signature Scheme for Simultaneous Verification by Neighbor Services

    Kenta NOMURA  Masami MOHRI  Yoshiaki SHIRAISHI  Masakatu MORII  

     
    PAPER-Cryptographic Schemes

      Pubricized:
    2017/05/18
      Vol:
    E100-D No:8
      Page(s):
    1770-1779

    We focus on the construction of the digital signature scheme for local broadcast, which allows the devices with limited resources to securely transmit broadcast message. A multi-group authentication scheme that enables a node to authenticate its membership in multi verifiers by the sum of the secret keys has been proposed for limited resources. This paper presents a transformation which converts a multi-group authentication into a multi-group signature scheme. We show that the multi-group signature scheme converted by our transformation is existentially unforgeable against chosen message attacks (EUF-CMA secure) in the random oracle model if the multi-group authentication scheme is secure against impersonation under passive attacks (IMP-PA secure). In the multi-group signature scheme, a sender can sign a message by the secret keys which multiple certification authorities issue and the signature can validate the authenticity and integrity of the message to multiple verifiers. As a specific configuration example, we show the example in which the multi-group signature scheme by converting an error correcting code-based multi-group authentication scheme.

  • Recovery Measure against Disabling Reassembly Attack to DNP3 Communication

    Sungmoon KWON  Hyunguk YOO  Taeshik SHON  

     
    PAPER-Industrial Control System Security

      Pubricized:
    2017/05/18
      Vol:
    E100-D No:8
      Page(s):
    1790-1797

    In the past, the security of industrial control systems was guaranteed by their obscurity. However, as devices of industrial control systems became more varied and interaction between these devices became necessary, effective management systems for such networks emerged. This triggered the need for cyber-physical systems that connect industrial control system networks and external system networks. The standards for the protocols in industrial control systems explain security functions in detail, but many devices still use nonsecure communication because it is difficult to update existing equipment. Given this situation, a number of studies are being conducted to detect attacks against industrial control system protocols, but these studies consider only data payloads without considering the case that industrial control systems' availability is infringed owing to packet reassembly failures. Therefore, with regard to the DNP3 protocol, which is used widely in industrial control systems, this paper describes attacks that can result in packet reassembly failures, proposes a countermeasure, and tests the proposed countermeasure by conducting actual attacks and recoveries. The detection of a data payload should be conducted after ensuring the availability of an industrial control system by using this type of countermeasure.

  • Optimal Power Splitting and Power Allocation in EH-Enabled Multi-Link Multi-Antenna Relay Networks

    Shengyu LI  Wenjun XU  Zhihui LIU  Junyi WANG  Jiaru LIN  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2017/02/09
      Vol:
    E100-B No:8
      Page(s):
    1480-1488

    This paper studies the multi-link multi-antenna amplify-and-forward (AF) relay system, in which multiple source-destination pairs communicate with the aid of an energy harvesting (EH)-enabled relay and the relay utilizes the power splitting (PS) protocol to accomplish simultaneous EH and information forwarding (IF). Specifically, independent PS, i.e., allow each antenna to have an individual PS factor, and cooperative power allocation (PA) i.e., adaptively allocate the harvested energy to each channel, are proposed to increase the signal processing degrees of freedom and energy utilization. Our objective is to maximize the minimum rate of all source-destination pairs, i.e., the max-min rate, by jointly optimizing the PS and PA strategies. The optimization problem is first established for the ideal channel state information (CSI) model. To solve the formulated non-convex problem, the optimal forwarding matrix is derived and an auxiliary variable is introduced to remove the coupling of transmission rates in two slots, following which a bi-level iteration algorithm is proposed to determine the optimal PS and PA strategy by jointly utilizing the bisection and golden section methods. The proposal is then extended into the partial CSI model, and the final transmission rate for each source-destination pair is modified by treating the CSI error as random noise. With a similar analysis, it is proved that the proposed bi-level algorithm can also solve the joint PS and PA optimization problem in the partial CSI model. Simulation results show that the proposed algorithm works well in both ideal CSI and partial CSI models, and by means of independent PS and cooperative PA, the achieved max-min rate is greatly improved over existing non-EH-enabled and EH-enabled relay schemes, especially when the signal processing noise at the relay is large and the sources use quite different transmit powers.

  • An Overview of Security and Privacy Issues for Internet of Things Open Access

    Heung Youl YOUM  

     
    INVITED PAPER

      Pubricized:
    2017/05/18
      Vol:
    E100-D No:8
      Page(s):
    1649-1662

    The Internet of Things (IoT) is defined as a global infrastructure for the Information Society, enabling advanced services by interconnecting (physical and virtual) things based on, existing and evolving, interoperable information and communication technologies by ITU-T. Data may be communicated in low-power and lossy environments, which causes complicated security issues. Furthermore, concerns are raised over access of personally identifiable information pertaining to IoT devices, network and platforms. Security and privacy concerns have been main barriers to implement IoT, which needs to be resolved appropriate security and privacy measures. This paper describes security threats and privacy concerns of IoT, surveys current studies related to IoT and identifies the various requirements and solutions to address these security threats and privacy concerns. In addition, this paper also focuses on major global standardization activities for security and privacy of Internet of Things. Furthermore, future directions and strategies of international standardization for theInternet of Thing's security and privacy issues will be given. This paper provides guidelines to assist in suggesting the development and standardization strategies forward to allow a massive deployment of IoT systems in real world.

  • Station Grouping Strategy for Minimizing Association Delay in IEEE 802.11ah

    Pranesh STHAPIT  Jae-Young PYUN  

     
    PAPER-Network

      Pubricized:
    2017/01/24
      Vol:
    E100-B No:8
      Page(s):
    1419-1427

    IEEE 802.11ah is an emerging wireless LAN standard in the sub-1-GHz license-exempt bands for cost-effective and range-extended communication. One of the most challenging issues that need to be overcome in relation to IEEE 802.11ah is to ensure that thousands of stations are able to associate efficiently with a single access point. During network initialization, several thousand stations try to associate with the access point, leading to heavy channel contention and long association delay. Therefore, IEEE 802.11ah has introduced an authentication control mechanism that classifies stations into groups and only a small number of stations in a group are allowed to access the medium in a beacon interval. This grouping strategy provides fair channel access to a large number of stations. However, the approach to grouping the stations and determining the best group size is undefined in the draft of IEEE 802.11ah. In this paper, we first model the authentication/association in IEEE 802.11ah. Our analysis shows that there exists the best group size that results in minimal association delay. Consequently, the analytical model is extended to determine the best group size. Finally, an enhanced authentication control algorithm, which utilizes the best group size to provide the minimum association delay, is proposed. The numerical and the simulation results we obtained with the proposed method demonstrate that our method succeeds in minimizing the association delay.

  • Cooperative Distributed Antenna Transmission for 5G Mobile Communications Network

    Fumiyuki ADACHI  Amnart BOONKAJAY  Yuta SEKI  Tomoyuki SAITO  Shinya KUMAGAI  Hiroyuki MIYAZAKI  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2017/02/08
      Vol:
    E100-B No:8
      Page(s):
    1190-1204

    In this paper, the recent advances in cooperative distributed antenna transmission (CDAT) are introduced for spatial diversity and multi-user spatial multiplexing in 5G mobile communications network. CDAT is an advanced version of the coordinated multi-point (CoMP) transmission. Space-time block coded transmit diversity (STBC-TD) for spatial diversity and minimum mean square error filtering combined with singular value decomposition (MMSE-SVD) for multi-user spatial multiplexing are described under the presence of co-channel interference from adjacent macro-cells. Blind selected mapping (blind SLM) which requires no side information transmission is introduced in order to suppress the increased peak-to-average signal power ratio (PAPR) of the transmit signals when CDAT is applied. Some computer simulation results are presented to confirm the effectiveness of CDAT techniques.

  • Energy-Efficient and Highly-Reliable Nonvolatile FPGA Using Self-Terminated Power-Gating Scheme

    Daisuke SUZUKI  Takahiro HANYU  

     
    PAPER-VLSI Architecture

      Pubricized:
    2017/05/19
      Vol:
    E100-D No:8
      Page(s):
    1618-1624

    An energy-efficient nonvolatile FPGA with assuring highly-reliable backup operation using a self-terminated power-gating scheme is proposed. Since the write current is automatically cut off just after the temporal data in the flip-flop is successfully backed up in the nonvolatile device, the amount of write energy can be minimized with no write failure. Moreover, when the backup operation in a particular cluster is completed, power supply of the cluster is immediately turned off, which minimizes standby energy due to leakage current. In fact, the total amount of energy consumption during the backup operation is reduced by 66% in comparison with that of a conventional worst-case-based approach where the long time write current pulse is used for the reliable write.

  • Novel Method to Watermark Anonymized Data for Data Publishing

    Yuichi NAKAMURA  Yoshimichi NAKATSUKA  Hiroaki NISHI  

     
    PAPER-Privacy

      Pubricized:
    2017/05/18
      Vol:
    E100-D No:8
      Page(s):
    1671-1679

    In this study, an anonymization infrastructure for the secondary use of data is proposed. The proposed infrastructure can publish data that includes privacy information while preserving the privacy by using anonymization techniques. The infrastructure considers a situation where ill-motivated users redistribute the data without authorization. Therefore, we propose a watermarking method for anonymized data to solve this problem. The proposed method is implemented, and the proposed method's tolerance against attacks is evaluated.

  • Increasing Splitting Ratio of Extended-Reach WDM/TDM-PON by Using Central Office Sited Automatic Gain Controlled SOAs

    Masamichi FUJIWARA  Ryo KOMA  

     
    PAPER-Fiber-Optic Transmission for Communications

      Pubricized:
    2017/02/02
      Vol:
    E100-B No:8
      Page(s):
    1388-1396

    To drastically increase the splitting ratio of extended-reach (40km span) time- and wavelength-division multiplexed passive optical networks (WDM/TDM-PONs), we modify the gain control scheme of our automatic gain controlled semiconductor optical amplifiers (AGC-SOAs) that were developed to support upstream transmission in long-reach systems. While the original AGC-SOAs are located outside the central office (CO) as repeaters, the new AGC-SOAs are located inside the CO and connected to each branch of an optical splitter in the CO. This arrangement has the potential to greatly reduce the costs of CO-sited equipment as they are shared by many more users if the new gain control scheme works properly even when the input optical powers are low. We develop a prototype and experimentally confirm its effectiveness in increasing the splitting ratio of extended-reach systems to 512.

  • Stochastic Fault-Tolerant Routing in Dual-Cubes

    Junsuk PARK  Nobuhiro SEKI  Keiichi KANEKO  

     
    LETTER-Dependable Computing

      Pubricized:
    2017/05/10
      Vol:
    E100-D No:8
      Page(s):
    1920-1921

    In the topologies for interconnected nodes, it is desirable to have a low degree and a small diameter. For the same number of nodes, a dual-cube topology has almost half the degree compared to a hypercube while increasing the diameter by just one. Hence, it is a promising topology for interconnection networks of massively parallel systems. We propose here a stochastic fault-tolerant routing algorithm to find a non-faulty path from a source node to a destination node in a dual-cube.

  • Performance Comparison of List Viterbi Algorithm of Tail-Biting Convolutional Code for Future Machine Type Communications

    Shunichi BUSHISUE  Satoshi SUYAMA  Satoshi NAGATA  Nobuhiko MIKI  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2017/02/08
      Vol:
    E100-B No:8
      Page(s):
    1293-1300

    In the future, 5G radio access and support for the internet of things (IoT) is becoming more important, which is called machine type communications. Different from current mobile communication systems, machine type communications generates relatively small packets. In order to support such small packets with high reliability, channel coding techniques are inevitable. One of the most effective channel codes in such conditions is the tail-biting convolutional code, since it is used in LTE systems due to its good performance for small packet sizes. By employing a list Viterbi algorithm for the tail-biting convolutional code, the block error rate (BLER) performances is further improved. Therefore, this paper evaluates the BLER performances of several list Viterbi algorithms, i.e., circular parallel list Viterbi algorithm (CPLVA), per stage CPLVA (PSCPLVA), and successive state and sequence estimation (SSSE). In the evaluation, computational complexity is also taken into account. It is shown that the performance of the CPLVA is better in the wide range of computational complexity defined in this paper.

  • Joint Optimization of User Association and Inter-Cell Interference Coordination for Proportional Fair-Based System Throughput Maximization in Heterogeneous Cellular Networks

    Yoshitaka IKEDA  Shozo OKASAKA  Kenichi HIGUCHI  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2017/02/08
      Vol:
    E100-B No:8
      Page(s):
    1334-1342

    This paper proposes a proportional fair-based joint optimization method for user association and the bandwidth ratio of protected radio resources exclusively used by pico base stations (BSs) for inter-cell interference coordination (ICIC) in heterogeneous networks where low transmission-power pico BSs overlay a high transmission-power macro BS. The proposed method employs an iterative algorithm, in which the user association process for a given bandwidth ratio of protected radio resources and the bandwidth ratio control of protected radio resources for a given user association are applied alternately and repeatedly up to convergence. For user association, we use our previously reported decentralized iterative user association method based on the feedback information of each individual user assisted by a small amount of broadcast information from the respective BSs. Based on numerical results, we show that the proposed method adaptively achieves optimal user association and bandwidth ratio control of protected radio resources, which maximizes the geometric mean user throughput within the macrocell coverage area. The system throughput of the proposed method is compared to that for conventional approaches to show the performance gain.

  • A Balanced Decision Tree Based Heuristic for Linear Decomposition of Index Generation Functions

    Shinobu NAGAYAMA  Tsutomu SASAO  Jon T. BUTLER  

     
    PAPER-Logic Design

      Pubricized:
    2017/05/19
      Vol:
    E100-D No:8
      Page(s):
    1583-1591

    Index generation functions model content-addressable memory, and are useful in virus detectors and routers. Linear decompositions yield simpler circuits that realize index generation functions. This paper proposes a balanced decision tree based heuristic to efficiently design linear decompositions for index generation functions. The proposed heuristic finds a good linear decomposition of an index generation function by using appropriate cost functions and a constraint to construct a balanced tree. Since the proposed heuristic is fast and requires a small amount of memory, it is applicable even to large index generation functions that cannot be solved in a reasonable time by existing heuristics. This paper shows time and space complexities of the proposed heuristic, and experimental results using some large examples to show its efficiency.

  • Health Checkup Data Analysis Focusing on Body Mass Index

    Mizuki HIGUCHI  Kenichi SORACHI  Yutaka HATA  

     
    PAPER-Soft Computing

      Pubricized:
    2017/05/19
      Vol:
    E100-D No:8
      Page(s):
    1634-1641

    This paper analyzes the relationship between the changes of Body Mass Index (BMI) and those of the other health checkup data in one year. We divide all data of the subjects into 13 groups by their BMI changes. We calculate these variations in each group and classify the variations into gender, age, and BMI. As the result by gender, men were more influenced by the changes of BMI than women at Hb-A1c, AC, GPT, GTP, and TG. As the result of classification by age, they were influenced by the changes of BMI at Hb-A1c, GPT, and DTP by age. As the result of classification by BMI, inspection values such as GOT, GPT, and GTP decreased according to the decrement of BMI. Next we show the result on gender-age, gender-BMI, and age-BMI clusters. Our results showed that subjects should reduce BMI values in order to improve lifestyle-related diseases. Several inspection values would be improved according to decrement of BMI. Conversely, it may be difficult for subjects with under 18 of BMI to manage them by BMI. We show a possibility that we could prevent the lifestyle disease by controlling BMI.

  • Double-Rate Tomlinson-Harashima Precoding for Multi-Valued Data Transmission

    Yosuke IIJIMA  Yasushi YUMINAKA  

     
    PAPER-VLSI Architecture

      Pubricized:
    2017/05/19
      Vol:
    E100-D No:8
      Page(s):
    1611-1617

    The growing demand for high-speed data communication has continued to meet the need for ever-increasing I/O bandwidth in recent VLSI systems. However, signal integrity issues, such as intersymbol interference (ISI) and reflections, make the channel band-limited at high-speed data rates. We propose high-speed data transmission techniques for VLSI systems using Tomlinson-Harashima precoding (THP). Because THP can eliminate ISI by inverting the characteristics of channels with limited peak and average power at the transmitter, it is suitable for implementing advanced low-voltage and high-speed VLSI systems. This paper presents a novel double-rate THP equalization technique especially intended for multi-valued data transmission to further improve THP performance. Simulation and measurement results show that the proposed THP equalization with a double sampling rate can enhance the data transition time and, therefore, improve the eye opening.

  • Accurate 3-Dimensional Imaging Method by Multi-Static RPM with Range Point Clustering for Short Range UWB Radar

    Yuta SASAKI  Fang SHANG  Shouhei KIDERA  Tetsuo KIRIMOTO  

     
    PAPER-Sensing

      Pubricized:
    2017/01/27
      Vol:
    E100-B No:8
      Page(s):
    1498-1506

    Ultra-wideband millimeter wave radars significantly enhance the capabilities of three-dimensional (3D) imaging sensors, making them suitable for short-range surveillance and security purposes. For such applications, developed the range point migration (RPM) method, which achieves highly accurate surface extraction by using a range-point focusing scheme. However, this method is inaccurate and incurs great computation cost for complicated-shape targets with many reflection points, such as the human body. As an essential solution to this problem, we introduce herein a range-point clustering algorithm that exploits, the RPM feature. Results from numerical simulations assuming 140-GHz millimeter wavelength radar verify that the proposed method achieves remarkably accurate 3D imaging without sacrificing computational efficiency.

  • High-Accuracy and Area-Efficient Stochastic FIR Digital Filters Based on Hybrid Computation

    Shunsuke KOSHITA  Naoya ONIZAWA  Masahide ABE  Takahiro HANYU  Masayuki KAWAMATA  

     
    PAPER-VLSI Architecture

      Pubricized:
    2017/05/22
      Vol:
    E100-D No:8
      Page(s):
    1592-1602

    This paper presents FIR digital filters based on stochastic/binary hybrid computation with reduced hardware complexity and high computational accuracy. Recently, some attempts have been made to apply stochastic computation to realization of digital filters. Such realization methods lead to significant reduction of hardware complexity over the conventional filter realizations based on binary computation. However, the stochastic digital filters suffer from lower computational accuracy than the digital filters based on binary computation because of the random error fluctuations that are generated in stochastic bit streams, stochastic multipliers, and stochastic adders. This becomes a serious problem in the case of FIR filter realizations compared with the IIR counterparts because FIR filters usually require larger number of multiplications and additions than IIR filters. To improve the computational accuracy, this paper presents a stochastic/binary hybrid realization, where multipliers are realized using stochastic computation but adders are realized using binary computation. In addition, a coefficient-scaling technique is proposed to further improve the computational accuracy of stochastic FIR filters. Furthermore, the transposed structure is applied to the FIR filter realization, leading to reduction of hardware complexity. Evaluation results demonstrate that our method achieves at most 40dB improvement in minimum stopband attenuation compared with the conventional pure stochastic design.

  • Finding New Varieties of Malware with the Classification of Network Behavior

    Mitsuhiro HATADA  Tatsuya MORI  

     
    PAPER-Program Analysis

      Pubricized:
    2017/05/18
      Vol:
    E100-D No:8
      Page(s):
    1691-1702

    An enormous number of malware samples pose a major threat to our networked society. Antivirus software and intrusion detection systems are widely implemented on the hosts and networks as fundamental countermeasures. However, they may fail to detect evasive malware. Thus, setting a high priority for new varieties of malware is necessary to conduct in-depth analyses and take preventive measures. In this paper, we present a traffic model for malware that can classify network behaviors of malware and identify new varieties of malware. Our model comprises malware-specific features and general traffic features that are extracted from packet traces obtained from a dynamic analysis of the malware. We apply a clustering analysis to generate a classifier and evaluate our proposed model using large-scale live malware samples. The results of our experiment demonstrate the effectiveness of our model in finding new varieties of malware.

  • Trustworthy DDoS Defense: Design, Proof of Concept Implementation and Testing

    Mohamad Samir A. EID  Hitoshi AIDA  

     
    PAPER-Internet Security

      Pubricized:
    2017/05/18
      Vol:
    E100-D No:8
      Page(s):
    1738-1750

    Distributed Denial of Service (DDoS) attacks based on HTTP and HTTPS (i.e., HTTP(S)-DDoS) are increasingly popular among attackers. Overlay-based mitigation solutions attract small and medium-sized enterprises mainly for their low cost and high scalability. However, conventional overlay-based solutions assume content inspection to remotely mitigate HTTP(S)-DDoS attacks, prompting trust concerns. This paper reports on a new overlay-based method which practically adds a third level of client identification (to conventional per-IP and per-connection). This enhanced identification enables remote mitigation of more complex HTTP(S)-DDoS categories without content inspection. A novel behavior-based reputation and penalty system is designed, then a simplified proof of concept prototype is implemented and deployed on DeterLab. Among several conducted experiments, two are presented in this paper representing a single-vector and a multi-vector complex HTTP(S)-DDoS attack scenarios (utilizing LOIC, Slowloris, and a custom-built attack tool for HTTPS-DDoS). Results show nearly 99.2% reduction in attack traffic and 100% chance of legitimate service. Yet, attack reduction decreases, and cost in service time (of a specified file) rises, temporarily during an approximately 2 minutes mitigation time. Collateral damage to non-attacking clients sharing an attack IP is measured in terms of a temporary extra service time. Only the added identification level was utilized for mitigation, while future work includes incorporating all three levels to mitigate switching and multi-request per connection attack categories.

  • Successive Partial Interference Cancellation Scheme for FD-MIMO Relaying

    Chang-Bin HA  Jung-In BAIK  Hyoung-Kyu SONG  

     
    LETTER-Digital Signal Processing

      Vol:
    E100-A No:8
      Page(s):
    1729-1732

    This letter presents a successive partial interference cancellation (SPIC) scheme for full-duplex (FD) and multiple-input multiple-output (MIMO) relaying system. The proposed scheme coordinates the cancellation for the self-interference and inter-stream interference. The objective for the coordination focuses on simultaneously minimizing the two interferences. Simulation results under the measured data show that the system with the proposed scheme can achieve a significant performance gain compared to the conventional FD and half-duplex (HD) systems.

3221-3240hit(21534hit)