The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] TE(21534hit)

3641-3660hit(21534hit)

  • Migration Cost Sensitive Garbage Collection Technique for Non-Volatile Memory Systems

    Sang-Ho HWANG  Ju Hee CHOI  Jong Wook KWAK  

     
    LETTER-Software System

      Pubricized:
    2016/09/12
      Vol:
    E99-D No:12
      Page(s):
    3177-3180

    In this letter, we propose a garbage collection technique for non-volatile memory systems, called Migration Cost Sensitive Garbage Collection (MCSGC). Considering the migration overhead from selecting victim blocks, MCSGC increases the lifetime of memory systems and improves response time in garbage collection. Additionally, the proposed algorithm also improves the efficiency of garbage collection by separating cold data from hot data in valid pages. In the experimental evaluation, we show that MCSGC yields up to a 82% improvement in lifetime prolongation, compared with existing garbage collection, and it also reduces erase and migration operations by up to 30% and 29%, respectively.

  • Second-Order Achievable Rate Region of Slepian-Wolf Coding Problem in terms of Smooth Max-Entropy for General Sources

    Shota SAITO  Toshiyasu MATSUSHIMA  

     
    LETTER-Shannon Theory

      Vol:
    E99-A No:12
      Page(s):
    2275-2280

    This letter deals with the Slepian-Wolf coding problem for general sources. The second-order achievable rate region is derived using quantity which is related to the smooth max-entropy and the conditional smooth max-entropy. Moreover, we show the relationship of the functions which characterize the second-order achievable rate region in our study and previous study.

  • Improvement of Throughput Prediction Scheme Considering Terminal Distribution in Multi-Rate WLAN Considering Both CSMA/CA and Frame Collision

    Ryo HAMAMOTO  Chisa TAKANO  Hiroyasu OBATA  Kenji ISHIDA  

     
    PAPER-Wireless system

      Pubricized:
    2016/08/24
      Vol:
    E99-D No:12
      Page(s):
    2923-2933

    Wireless Local Area Networks (WLANs) based on the IEEE 802.11 standard have been increasingly used. Access Points (APs) are being established in various public places, such as railway stations and airports, as well as private residences. Moreover, the rate of public WLAN services continues to increase. Throughput prediction of an AP in a multi-rate environment, i.e., predicting the amount of receipt data (including retransmission packets at an AP), is an important issue for wireless network design. Moreover, it is important to solve AP placement and selection problems. To realize the throughput prediction, we have proposed an AP throughput prediction method that considers terminal distribution. We compared the predicted throughput of the proposed method with a method that uses linear order computation and confirmed the performance of the proposed method, not by a network simulator but by the numerical computation. However, it is necessary to consider the impact of CSMA/CA in the MAC layer, because throughput is greatly influenced by frame collision. In this paper, we derive an effective transmission rate considering CSMA/CA and frame collision. We then compare the throughput obtained using the network simulator NS2 with a prediction value calculated by the proposed method. Simulation results show that the maximum relative error of the proposed method is approximately 6% and 15% for UDP and TCP, respectively, while that is approximately 17% and 21% in existing method.

  • Accelerating Reachability Analysis on Petri Net for Mutual Exclusion-Based Deadlock Detection

    Yunkai DU  Naijie GU  Xin ZHOU  

     
    PAPER-Distributed system

      Pubricized:
    2016/08/24
      Vol:
    E99-D No:12
      Page(s):
    2978-2985

    Petri Net (PN) is a frequently-used model for deadlock detection. Among various detection methods on PN, reachability analysis is the most accurate one since it never produces any false positive or false negative. Although suffering from the well-known state space explosion problem, reachability analysis is appropriate for small- and medium-scale programs. In order to mitigate the explosion problem several kinds of techniques have been proposed aiming at accelerating the reachability analysis, such as net reduction and abstraction. However, these techniques are for general PN and do not take the particularity of application into consideration, so their optimization potential is not adequately developed. In this paper, the feature of mutual exclusion-based program is considered, therefore several strategies are proposed to accelerate the reachability analysis. Among these strategies a customized net reduction rule aims at reducing the scale of PN, two marking compression methods and two pruning methods can reduce the volume of reachability graph. Reachability analysis on PN can only report one deadlock on each path. However, the reported deadlock may be a false alarm in which situation real deadlocks may be hidden. To improve the detection efficiency, we proposed a deadlock recovery algorithm so that more deadlocks can be detected in a shorter time. To validate the efficiency of these methods, a prototype is implemented and applied to SPLASH2 benchmarks. The experimental results show that these methods accelerate the reachability analysis for mutual exclusion-based deadlock detection significantly.

  • A Replication Protocol Supporting Multiple Consistency Models without Single Point of Failure

    Atsushi OHTA  Ryota KAWASHIMA  Hiroshi MATSUO  

     
    PAPER-Database system

      Pubricized:
    2016/08/24
      Vol:
    E99-D No:12
      Page(s):
    3013-3023

    Many distributed systems use a replication mechanism for reliability and availability. On the other hand, application developers have to consider minimum consistency requirement for each application. Therefore, a replication protocol that supports multiple consistency models is required. Multi-Consistency Data Replication (McRep) is a proxy-based replication protocol and can support multiple consistency models. However, McRep has a potential problem in that a replicator relaying all request and reply messages between clients and replicas can be a performance bottleneck and a Single-Point-of-Failure (SPoF). In this paper, we introduce the multi-consistency support mechanism of McRep to a combined state-machine and deferred-update replication protocol to eliminate the performance bottleneck and SPoF. The state-machine and deferred-update protocols are well-established approaches for fault-tolerant data management systems. But each method can ensure only a specific consistency model. Thus, we adaptively select a replication method from the two replication bases. In our protocol, the functionality of the McRep's replicator is realized by clients and replicas. Each replica has new roles in serialization of all transactions and managing all views of the database, and each client has a new role in managing status of its transactions. We have implemented and evaluated the proposed protocol and compared to McRep. The evaluation results show that the proposed protocol achieved comparable throughput of transactions to McRep. Especially the proposed protocol improved the throughput up to 16% at a read-heavy workload in One-Copy. Finally, we demonstrated the proposed failover mechanism. As a result, a failure of a leader replica did not affect continuity of the entire replication system unlike McRep.

  • A Bipartite Graph-Based Ranking Approach to Query Subtopics Diversification Focused on Word Embedding Features

    Md Zia ULLAH  Masaki AONO  

     
    PAPER-Data Engineering, Web Information Systems

      Pubricized:
    2016/09/05
      Vol:
    E99-D No:12
      Page(s):
    3090-3100

    Web search queries are usually vague, ambiguous, or tend to have multiple intents. Users have different search intents while issuing the same query. Understanding the intents through mining subtopics underlying a query has gained much interest in recent years. Query suggestions provided by search engines hold some intents of the original query, however, suggested queries are often noisy and contain a group of alternative queries with similar meaning. Therefore, identifying the subtopics covering possible intents behind a query is a formidable task. Moreover, both the query and subtopics are short in length, it is challenging to estimate the similarity between a pair of short texts and rank them accordingly. In this paper, we propose a method for mining and ranking subtopics where we introduce multiple semantic and content-aware features, a bipartite graph-based ranking (BGR) method, and a similarity function for short texts. Given a query, we aggregate the suggested queries from search engines as candidate subtopics and estimate the relevance of them with the given query based on word embedding and content-aware features by modeling a bipartite graph. To estimate the similarity between two short texts, we propose a Jensen-Shannon divergence based similarity function through the probability distributions of the terms in the top retrieved documents from a search engine. A diversified ranked list of subtopics covering possible intents of a query is assembled by balancing the relevance and novelty. We experimented and evaluated our method on the NTCIR-10 INTENT-2 and NTCIR-12 IMINE-2 subtopic mining test collections. Our proposed method outperforms the baselines, known related methods, and the official participants of the INTENT-2 and IMINE-2 competitions.

  • A Bayesian Approach to Image Recognition Based on Separable Lattice Hidden Markov Models

    Kei SAWADA  Akira TAMAMORI  Kei HASHIMOTO  Yoshihiko NANKAKU  Keiichi TOKUDA  

     
    PAPER-Pattern Recognition

      Pubricized:
    2016/09/05
      Vol:
    E99-D No:12
      Page(s):
    3119-3131

    This paper proposes a Bayesian approach to image recognition based on separable lattice hidden Markov models (SL-HMMs). The geometric variations of the object to be recognized, e.g., size, location, and rotation, are an essential problem in image recognition. SL-HMMs, which have been proposed to reduce the effect of geometric variations, can perform elastic matching both horizontally and vertically. This makes it possible to model not only invariances to the size and location of the object but also nonlinear warping in both dimensions. The maximum likelihood (ML) method has been used in training SL-HMMs. However, in some image recognition tasks, it is difficult to acquire sufficient training data, and the ML method suffers from the over-fitting problem when there is insufficient training data. This study aims to accurately estimate SL-HMMs using the maximum a posteriori (MAP) and variational Bayesian (VB) methods. The MAP and VB methods can utilize prior distributions representing useful prior information, and the VB method is expected to obtain high generalization ability by marginalization of model parameters. Furthermore, to overcome the local maximum problem in the MAP and VB methods, the deterministic annealing expectation maximization algorithm is applied for training SL-HMMs. Face recognition experiments performed on the XM2VTS database indicated that the proposed method offers significantly improved image recognition performance. Additionally, comparative experiment results showed that the proposed method was more robust to geometric variations than convolutional neural networks.

  • An Efficient Algorithm of Discrete Particle Swarm Optimization for Multi-Objective Task Assignment

    Nannan QIAO  Jiali YOU  Yiqiang SHENG  Jinlin WANG  Haojiang DENG  

     
    PAPER-Distributed system

      Pubricized:
    2016/08/24
      Vol:
    E99-D No:12
      Page(s):
    2968-2977

    In this paper, a discrete particle swarm optimization method is proposed to solve the multi-objective task assignment problem in distributed environment. The objectives of optimization include the makespan for task execution and the budget caused by resource occupation. A two-stage approach is designed as follows. In the first stage, several artificial particles are added into the initialized swarm to guide the search direction. In the second stage, we redefine the operators of the discrete PSO to implement addition, subtraction and multiplication. Besides, a fuzzy-cost-based elite selection is used to improve the computational efficiency. Evaluation shows that the proposed algorithm achieves Pareto improvement in comparison to the state-of-the-art algorithms.

  • Inter-Person Occlusion Handling with Social Interaction for Online Multi-Pedestrian Tracking

    Yuke LI  Weiming SHEN  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2016/09/15
      Vol:
    E99-D No:12
      Page(s):
    3165-3171

    Inter-person occlusion handling is a critical issue in the field of tracking, and it has been extensively researched. Several state-of-the-art methods have been proposed, such as focusing on the appearance of the targets or utilizing knowledge of the scene. In contrast with the approaches proposed in the literature, we propose to address this issue using a social interaction model, which allows us to explore spatio-temporal information pertaining to the targets involved in the occlusion situation. Our experimental results show promising results compared with those obtained using other methods.

  • SLM: A Scalable Logic Module Architecture with Less Configuration Memory

    Motoki AMAGASAKI  Ryo ARAKI  Masahiro IIDA  Toshinori SUEYOSHI  

     
    LETTER

      Vol:
    E99-A No:12
      Page(s):
    2500-2506

    Most modern field programmable gate arrays (FPGAs) use a lookup table (LUT) as their basic logic cell. LUT resource requirements increase as O(2k) with an increasing number of inputs, k, so LUTs with more than six inputs negatively affect the overall FPGA performance. To address this problem, we propose a scalable logic module (SLM), which is a logic cell with less configuration memory, by using partial functions of the Shannon expansion for logics that appear frequently. In addition, we develop a technology mapping tool for SLM. The key feature of our tool is to combine a function decomposition process with traditional cut-based mapping. Experimental results show that an SLM-based FPGA with our mapping method uses much fewer configuration memory bits and has a smaller area than conventional LUT-based FPGAs.

  • Enhancing Entropy Throttling: New Classes of Injection Control in Interconnection Networks

    Takashi YOKOTA  Kanemitsu OOTSU  Takeshi OHKAWA  

     
    PAPER-Interconnection network

      Pubricized:
    2016/08/25
      Vol:
    E99-D No:12
      Page(s):
    2911-2922

    State-of-the-art parallel computers, which are growing in parallelism, require a lot of things in their interconnection networks. Although wide spectrum of efforts in research and development for effective and practical interconnection networks are reported, the problem is still open. One of the largest issues is congestion control that intends to maximize the network performance in terms of throughput and latency. Throttling, or injection limitation, is one of the center ideas of congestion control. We have proposed a new class of throttling method, Entropy Throttling, whose foundation is entropy concept of packets. The throttling method is successful in part, however, its potentials are not sufficiently discussed. This paper aims at exploiting capabilities of the Entropy Throttling method via comprehensive evaluation. Major contributions of this paper are to introduce two ideas of hysteresis function and guard time and also to clarify wide performance characteristics in steady and unsteady communication situations. By introducing the new ideas, we extend the Entropy throttling method. The extended methods improve communication performance at most 3.17 times in the best case and 1.47 times in average compared with non-throttling cases in collective communication, while the method can sustain steady communication performance.

  • Rule-Based Sensor Data Aggregation System for M2M Gateways

    Yuichi NAKAMURA  Akira MORIGUCHI  Masanori IRIE  Taizo KINOSHITA  Toshihiro YAMAUCHI  

     
    PAPER-Sensor network

      Pubricized:
    2016/08/24
      Vol:
    E99-D No:12
      Page(s):
    2943-2955

    To reduce the server load and communication costs of machine-to-machine (M2M) systems, sensor data are aggregated in M2M gateways. Aggregation logic is typically programmed in the C language and embedded into the firmware. However, developing aggregation programs is difficult for M2M service providers because it requires gateway-specific knowledge and consideration of resource issues, especially RAM usage. In addition, modification of aggregation logic requires the application of firmware updates, which are risky. We propose a rule-based sensor data aggregation system, called the complex sensor data aggregator (CSDA), for M2M gateways. The functions comprising the data aggregation process are subdivided into the categories of filtering, statistical calculation, and concatenation. The proposed CSDA supports this aggregation process in three steps: the input, periodic data processing, and output steps. The behaviors of these steps are configured by an XML-based rule. The rule is stored in the data area of flash ROM and is updatable through the Internet without the need for a firmware update. In addition, in order to keep within the memory limit specified by the M2M gateway's manufacturer, the number of threads and the size of the working memory are static after startup, and the size of the working memory can be adjusted by configuring the sampling setting of a buffer for sensor data input. The proposed system is evaluated in an M2M gateway experimental environment. Results show that developing CSDA configurations is much easier than using C because the configuration decreases by 10%. In addition, the performance evaluation demonstrates the proposed system's ability to operate on M2M gateways.

  • Equivalent Circuit Modeling of a Semiconductor-Integrated Bow-Tie Antenna for the Physical Interpretation of the Radiation Characteristics in the Terahertz Region

    Hirokazu YAMAKURA  Michihiko SUHARA  

     
    PAPER-Semiconductor Materials and Devices

      Vol:
    E99-C No:12
      Page(s):
    1312-1322

    We have derived the physics-based equivalent circuit model of a semiconductor-integrated bow-tie antenna (BTA) for expressing its impedance and radiation characteristics as a terahertz transmitter. The equivalent circuit branches and components, consisting of 16 RLC parameters are determined based on electromagnetic simulations. All the values of the circuit elements are identified using the particle swarm optimization (PSO) that is one of the modern multi-purpose optimization methods. Moreover, each element value can also be explained by the structure of the semiconductor-integrated BTA, the device size, and the material parameters.

  • An 11-Bit Single-Ended SAR ADC with an Inverter-Based Comparator for Design Automation

    Guan-Wei JEN  Wei-Liang LIN  

     
    BRIEF PAPER-Electronic Circuits

      Vol:
    E99-C No:12
      Page(s):
    1331-1334

    This paper proposes a low power single-ended successive approximation register (SAR) analog-to-digital converter (ADC) to replace the only analog active circuit, the comparator, with a digital circuit, which is an inverter-based comparator. The replacement helps possible design automation. The inverter threshold voltage variation impact is minimal because an SAR ADC has only one comparator, and many applications are either insensitive to the resulting ADC offset or easily corrected digitally. The proposed resetting approach mitigates leakage when the input is close to the threshold voltage. As an intrinsic headroom-free, and thus low-rail-voltage, friendly structure, an inverter-based comparator also occupies a small area. Furthermore, an 11-bit ADC was designed and manufactured through a 0.35-µm CMOS process by adopting a low-power switching procedure. The ADC achieves an FOM of 181fJ/Conv.-step at a 25kS/s sampling rate when the supply voltage VDD is 1.2V.

  • Achievable Degrees of Freedom of MIMO Cellular Interfering Networks Using Interference Alignment

    Bowei ZHANG  Wenjiang FENG  Le LI  Guoling LIU  Zhiming WANG  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2016/07/05
      Vol:
    E99-B No:12
      Page(s):
    2600-2613

    In this paper, we investigate the degrees of freedom (DoF) of a MIMO cellular interfering network (CIN) with L (L≥3) cells and K users per cell. Previous works established the DoF upper bound of LK(M+N)/(LK+1) for the MIMO CIN by analyzing the interference alignment (IA) feasibility, where M and N denote the number of antennas at each base station (BS) and each user, respectively. However, there is still a gap between the DoF upper bound and the achievable DoF in existing designs. To address this problem, we propose two linear IA schemes without symbol extensions to jointly design transmit and receive beamforming matrices to align and eliminate interference. In the two schemes, the transmit beamforming vectors are allocated to different cluster structures so that the inter-cell interference (ICI) data streams from different ICI channels are aligned. The first scheme, named fixed cluster structure (FCS-IA) scheme, allocates ICI beamforming vectors to the cluster structures of fixed dimension and can achieve the DoF upper bound under some system configurations. The second scheme, named dynamic cluster structure IA (DCS-IA) scheme, allocates ICI beamforming vectors to the cluster structures of dynamic dimension and can get a tradeoff between the number of antennas at BSs and users so that ICI alignment can be applied under various system configurations. Through theoretical analysis and numerical simulations, we verify that the DoF upper bound can be achieved by using the FCS-IA scheme. Furthermore, we show that the proposed schemes can provide significant performance gain over the time division multiple access (TDMA) scheme in terms of DoF. From the perspective of DoF, it is shown that the proposed schemes are more effective than the conventional IA schemes for the MIMO CIN.

  • Surface Reconstruction of Renal Corpuscle from Microscope Renal Biopsy Image Sequence

    Jun ZHANG  Jinglu HU  

     
    PAPER-Image

      Vol:
    E99-A No:12
      Page(s):
    2539-2546

    The three dimensional (3D) reconstruction of a medical image sequence can provide intuitive morphologies of a target and help doctors to make more reliable diagnosis and give a proper treatment plan. This paper aims to reconstruct the surface of a renal corpuscle from the microscope renal biopsy image sequence. First, the contours of renal corpuscle in all slices are extracted automatically by using a context-based segmentation method with a coarse registration. Then, a new coevolutionary-based strategy is proposed to realize a fine registration. Finally, a Gauss-Seidel iteration method is introduced to achieve a non-rigid registration. Benefiting from the registrations, a smooth surface of the target can be reconstructed easily. Experimental results prove that the proposed method can effectively register the contours and give an acceptable surface for medical doctors.

  • Bitwise MAP Estimation for Group Testing Based on Holographic Transformation

    Tadashi WADAYAMA  Taisuke IZUMI  Kazushi MIMURA  

     
    PAPER-Coding Theory and Techniques

      Vol:
    E99-A No:12
      Page(s):
    2147-2154

    The main contribution of this paper is a non-trivial expression, that is called dual expression, of the posterior values for non-adaptive group testing problems. The dual expression is useful for exact bitwise MAP estimation. We assume a simplest non-adaptive group testing scenario including N-objects with binary status and M-tests. If a group contains one or more positive object, the test result for the group is assumed to be one; otherwise, the test result becomes zero. Our inference problem is to evaluate the posterior probabilities of the objects from the observation of M-test results and the prior probabilities for objects. The derivation of the dual expression of posterior values can be naturally described based on a holographic transformation to the normal factor graph (NFG) representing the inference problem. In order to handle OR constraints in the NFG, we introduce a novel holographic transformation that converts an OR function to a function similar to an EQUAL function.

  • General, Practical and Accurate Models for the Performance Analysis of Multi-Cache Systems

    Haoqiu HUANG  Lanlan RUI  Weiwei ZHENG  Danmei NIU  Xuesong QIU  Sujie SHAO  

     
    PAPER

      Vol:
    E99-B No:12
      Page(s):
    2559-2573

    In this work, we propose general, practical and accurate models to analyze the performance of multi-cache systems, in which a cache forwards its miss stream (i.e., requests which have not found the target item) to other caches. We extend a miss stream modeling technique originally known as Melazzi's approximation, which provides a simple but accurate approximate analysis for caches with cascade configurations. We consider several practical replication strategies, which have been commonly adopted in the context of ICN, taking into account the effects of temporal locality. Also, we capture the existing state correlations between neighboring caches by exploiting the cache eviction time. Our proposed models to handle traffic patterns allow us to go beyond the standard Poisson approximation under Independent Reference Model. Our results, validated against simulations, provide interesting insights into the performance of multi-cache systems with different replication strategies.

  • List Interest: Simply Packing Interests Dramatically Reduces Router Workload in Content-Centric Networking

    Jun KURIHARA  Kenji YOKOTA  Atsushi TAGAMI  

     
    PAPER

      Vol:
    E99-B No:12
      Page(s):
    2520-2531

    Content-centric networking (CCN) is an emerging networking architecture that is being actively investigated in both the research and industrial communities. In the latest version of CCN, a large number of interests have to be issued when large content is retrieved. Since CCN routers have to search several tables for each incoming interest, this could cause a serious problem of router workload. In order to solve this problem, this paper introduces a novel strategy of “grouping” multiple interests with common information and “packing” them to a special interest called the list interest. Our list interest is designed to co-operate with the manifest of CCN as its dual. This paper demonstrates that by skipping and terminating several search steps using the common information in the list interest, the router can search its tables for the list interest-based request with dramatically smaller complexity than the case of the standard interest-based request. Furthermore, we also consider the deployment of list interests and design a novel TCP-like congestion control method for list interests to employ them just like standard interests.

  • Up-Stream Dispatching of Power by Density of Power Packet

    Shinya NAWATA  Ryo TAKAHASHI  Takashi HIKIHARA  

     
    LETTER-Systems and Control

      Vol:
    E99-A No:12
      Page(s):
    2581-2584

    Power packet is a unit of electric power transferred by a pulse with an information tag. This letter discusses up-stream dispatching of required power at loads to sources through density modulation of power packet. Here, power is adjusted at a proposed router which dispatches power packets according to the tags. It is analyzed by averaging method and numerically verified.

3641-3660hit(21534hit)