The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] TE(21534hit)

4781-4800hit(21534hit)

  • Measurement of the Linewidth of a Frequency-tunable Laser Used in Optical Coherence Tomography

    Yoshifumi TAKASAKI  Keiji KURODA  Yuzo YOSHIKUNI  

     
    BRIEF PAPER-Optoelectronics

      Vol:
    E98-C No:3
      Page(s):
    275-278

    Optical coherence tomography using a tunable single-mode laser is investigated to clarify the effects of long coherence length and step-wise frequency changes.

  • Trigger Circuit of Hardware Trojan Based on Up/Down Counter

    Zhe HUANG  Ruohe YAO  Fei LUO  

     
    BRIEF PAPER-Electronic Circuits

      Vol:
    E98-C No:3
      Page(s):
    279-282

    A new trigger circuit based on up/down counter is proposed. This trigger circuit consists of a up/down counter and a pulse conversion circuit. Compared with a trigger circuit based on 32-bit counter, the proposed trigger circuit occupies less circuit area and consumes less power consumption, while the trigger process can be inversed, increasing the controllability of the Trojan.

  • Low-Energy Optical-to-Electrical Converters Based on Superconducting Nanowire for Single-Flux-Quantum Circuits Open Access

    Kemmei KAJINO  Shigehito MIKI  Taro YAMASHITA  Hirotaka TERAI  

     
    INVITED PAPER

      Vol:
    E98-C No:3
      Page(s):
    227-231

    We report the energy-efficient optical input interface using NbN superconducting nanowire-based optical-to-electrical (SN-OE) converters for a single-flux-quantum (SFQ) data processing system. The SN-OE converters with small active areas ranging from 1$, imes,$1 to 10$, imes,$10,$mu$m$^2$ were fabricated to improve the recovery time by reducing the kinetic inductance of the nanowire. The SN-OE with the smallest area of 1$, imes,$1 $mu$m$^2$ showed the recovery time of around 0.3 ns, while its detection efficiency for a single photon was reduced below 0.1% due to insufficient coupling efficiency with a single-mode optical fiber. However, the optical power dependence of the error rate of this device showed that the required optical power to achieve the error rate below $10^{-12}$ at 10 GHz operation is as large as 70 $mu$W, which is still one order of magnitude lower than semiconductor photo diodes. We also demonstrated the operation of the SN-OE converters combined with the SFQ readout circuit and confirmed the operating speed up to 77~MHz.

  • Interference Mitigation Framework Based on Interference Alignment for Femtocell-Macrocell Two Tier Cellular Systems

    Mohamed RIHAN  Maha ELSABROUTY  Osamu MUTA  Hiroshi FURUKAWA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E98-B No:3
      Page(s):
    467-476

    This paper presents a downlink interference mitigation framework for two-tier heterogeneous networks, that consist of spectrum-sharing macrocells and femtocells*. This framework establishes cooperation between the two tiers through two algorithms, namely, the restricted waterfilling (RWF) algorithm and iterative reweighted least squares interference alignment (IRLS-IA) algorithm. The proposed framework models the macrocell-femtocell two-tier cellular system as an overlay cognitive radio system in which the macrocell system plays the role of the primary user (PU) while the femtocell networks play the role of the cognitive secondary users (SUs). Through the RWF algorithm, the macrocell basestation (MBS) cooperates with the femtocell basestations (FBSs) by releasing some of its eigenmodes to the FBSs to do their transmissions even if the traffic is heavy and the MBS's signal to noise power ratio (SNR) is high. Then, the FBSs are expected to achieve a near optimum sum rate through employing the IRLS-IA algorithm to mitigate both the co-tier and cross-tier interference at the femtocell users' (FUs) receivers. Simulation results show that the proposed IRLS-IA approach provides an improved sum rate for the femtocell users compared to the conventional IA techniques, such as the leakage minimization approach and the nuclear norm based rank constraint rank minimization approach. Additionally, the proposed framework involving both IRLS-IA and RWF algorithms provides an improved total system sum rate compared with the legacy approaches for the case of multiple femtocell networks.

  • Local Tree Hunting: Finding Closest Contents from In-Network Cache

    Hiroshi SHIMIZU  Hitoshi ASAEDA  Masahiro JIBIKI  Nozomu NISHINAGA  

     
    PAPER-Internet Architecture and Protocols

      Pubricized:
    2014/12/11
      Vol:
    E98-D No:3
      Page(s):
    557-564

    How to retrieve the closest content from an in-network cache is one of the most important issues in Information-Centric Networking (ICN). This paper proposes a novel content discovery scheme called Local Tree Hunting (LTH). By adding branch-cast functionality to a local tree for content requests to a Content-Centric Network (CCN) response node, the discovery area for caching nodes expands. Since the location of such a branch-casting node moves closer to the request node when the content is more widely cached, the discovery range, i.e. the branch size of the local tree, becomes smaller. Thus, the discovery area is autonomously adjusted depending on the content dissemination. With this feature, LTH is able to find the “almost true closest” caching node without checking all the caching nodes in the in-network cache. The performance analysis employed in Zipf's law content distribution model and which uses the Least Recently Used eviction rule shows the superiority of LTH with respect to identifying the almost exact closest cache.

  • Response of a Superconducting Transition-Edge Sensor Microcalorimeter with a Mushroom-shaped Absorber to L X-rays Emitted by Transuranium Elements Open Access

    Keisuke MAEHATA  Makoto MAEDA  Naoko IYOMOTO  Kenji ISHIBASHI  Keisuke NAKAMURA  Katsunori AOKI  Koji TAKASAKI  Kazuhisa MITSUDA  Keiichi TANAKA  

     
    INVITED PAPER

      Vol:
    E98-C No:3
      Page(s):
    178-185

    A four-pixel-array superconducting transition-edge sensor (TES) microcalorimeter with a mushroom-shaped absorber was fabricated for the energy dispersive spectroscopy performed on a transmission electron microscope. The TES consists of a bilayer of Au/Ti with either a 50-nm or 120-nm thickness. The absorber of 5.0,$mu$m thick is made from a Au layer and its stem is deposited in the center of the TES surface. A Ta$_{2}$O$_{5}$ insulating layer of 100-nm thickness is inserted between the overhang region of the absorber and the TES surface. A selected pixel of the TES microcalorimeter was operated for the detection of Np L X-rays emitted from an $^{241}$Am source. A response of the TES microcalorimeter to L X-rays was obtained by analyzing detection signal pulses with using the optimal filter method. An energy resolution was obtained to be 33,eV of the full width at half maximum value at 17.751,keV of Np L$_{eta 1}$ considering its natural width of 13.4,eV. Response to L X-rays emitted from a mixture source of $^{238}$Pu, $^{239}$Pu and $^{241}$Am was obtained by operating the selected pixel of the TES microcalorimeter. Major L X-ray peaks of progeny elements of $alpha$ decay of Pu and Am isotopes were clearly identified in the obtained energy spectrum. The experimental results demonstrated the separation of $^{241}$Am and plutonium isotopes by L X-ray spectroscopy.

  • A Novel Statistical Approach to Detect Card Frauds Using Transaction Patterns

    Chae Chang LEE  Ji Won YOON  

     
    PAPER-Information Network

      Vol:
    E98-D No:3
      Page(s):
    649-660

    In this paper, we present new methods for learning the individual patterns of a card user's transaction amount and the region in which he or she uses the card, for a given period, and for determining whether the specified transaction is allowable in accordance with these learned user transaction patterns. Then, we classify legitimate transactions and fraudulent transactions by setting thresholds based on the learned individual patterns.

  • Automatic Mura Detection for Display Film Using Mask Filtering in Wavelet Transform

    Jong-Seung PARK  Seung-Ho LEE  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2014/11/21
      Vol:
    E98-D No:3
      Page(s):
    737-740

    In this letter, we present a method for automatic mura detection for display film using the efficient decision of cut-off frequency with DCT and mask filtering with wavelet transform. First, the background image including reflected light is estimated using DCT with adaptive cut-off frequency, and DWT is applied to background-removed images for generating mura mask. Then, a mura mask is generated by separating low-frequency noise in the approximation coefficients. Lastly, mura is detected by applying mura mask filtering to the detail coefficients. According to the comparison by Semu index, the results from the proposed method are superior to those from the existing methods. This indicates that the proposed method is high in reliability.

  • Computational Complexity of Generalized Golf Solitaire

    Chuzo IWAMOTO  

     
    LETTER

      Vol:
    E98-D No:3
      Page(s):
    541-544

    Golf is a solitaire game, where the object is to move all cards from a 5×8 rectangular layout of cards to the foundation. A top card in each column may be moved to the foundation if it is either one rank higher or lower than the top card of the foundation. If no cards may be moved, then the top card of the stock may be moved to the foundation. We prove that the generalized version of Golf Solitaire is NP-complete.

  • Third-Order Nonlinear IIR Filter for Compensating Nonlinear Distortions of Loudspeaker Systems

    Kenta IWAI  Yoshinobu KAJIKAWA  

     
    PAPER-Digital Signal Processing

      Vol:
    E98-A No:3
      Page(s):
    820-832

    In this paper, we propose a 3rd-order nonlinear IIR filter for compensating nonlinear distortions of loudspeaker systems. Nonlinear distortions are common around the lowest resonance frequency for electrodynamic loudspeaker systems. One interesting approach to compensating nonlinear distortions is to employ a mirror filter. The mirror filter is derived from the nonlinear differential equation for loudspeaker systems. The nonlinear parameters of a loudspeaker system, which include the force factor, stiffness, and so forth, depend on the displacement of the diaphragm. The conventional filter structure, which is called the 2nd-order nonlinear IIR filter that originates the mirror filter, cannot reduce nonlinear distortions at high frequencies because it does not take into account the nonlinearity of the self-inductance of loudspeaker systems. To deal with this problem, the proposed filter takes into account the nonlinearity of the self-inductance and has a 3rd-order nonlinear IIR filter structure. Hence, this filter can reduce nonlinear distortions at high frequencies while maintaining a lower computational complexity than that of a Volterra filter-based compensator. Experimental results demonstrate that the proposed filter outperforms the conventional filter by more than 2dB for 2nd-order nonlinear distortions at high frequencies.

  • The Case for Network Coding for Collective Communication on HPC Interconnection Networks Open Access

    Ahmed SHALABY  Ikki FUJIWARA  Michihiro KOIBUCHI  

     
    PAPER-Information Network

      Pubricized:
    2014/12/11
      Vol:
    E98-D No:3
      Page(s):
    661-670

    Recently network bandwidth becomes a performance concern particularly for collective communication since bisection bandwidths of supercomputers become far less than their full bisection bandwidths. In this context we propose the use of a network coding technique to reduce the number of unicasts and the size of data transferred in latency-sensitive collective communications in supercomputers. Our proposed network coding scheme has a hierarchical multicasting structure with intra-group and inter-group unicasts. Quantitative analysis show that the aggregate path hop counts by our hierarchical network coding decrease as much as 94% when compared to conventional unicast-based multicasts. We validate these results by cycle-accurate network simulations. In 1,024-switch networks, the network reduces the execution time of collective communications as much as 70%. We also show that our hierarchical network coding is beneficial for any packet size.

  • A Weighted Max-Min Ant Colony Algorithm for TSP Instances

    Yun BU  Tian Qian LI  Qiang ZHANG  

     
    LETTER-Numerical Analysis and Optimization

      Vol:
    E98-A No:3
      Page(s):
    894-897

    It is very difficult to know evolution state of ACO in its working. To solve the problem, we propose using colony entropy and mean colony entropy to monitor the algorithm. The two functions show fluctuation and declining trends depended on time t in a tour and iteration number. According to the principle, that each updated edge will get the same increment is improper. Then a weighted algorithm is proposed to calculate each arc's increment based on its selected probability. The strategy can provide more exploration to help to find the global optimum value, and experiments show its improved performance.

  • Secure Sets and Defensive Alliances in Graphs: A Faster Algorithm and Improved Bounds

    Kazuyuki AMANO  Kyaw May OO  Yota OTACHI  Ryuhei UEHARA  

     
    PAPER

      Vol:
    E98-D No:3
      Page(s):
    486-489

    Secure sets and defensive alliances in graphs are studied. They are sets of vertices that are safe in some senses. In this paper, we first present a fixed-parameter algorithm for finding a small secure set, whose running time is much faster than the previously known one. We then present improved bound on the smallest sizes of defensive alliances and secure sets for hypercubes. These results settle some open problems paused recently.

  • Narrowband Interference Mitigation Based on Compressive Sensing for OFDM Systems

    Sicong LIU  Fang YANG  Chao ZHANG  Jian SONG  

     
    LETTER-Noise and Vibration

      Vol:
    E98-A No:3
      Page(s):
    870-873

    A narrowband interference (NBI) estimation and mitigation method based on compressive sensing (CS) for communication systems with repeated training sequences is investigated in this letter. The proposed CS-based differential measuring method is performed through the differential operation on the inter-block-interference-free regions of the received adjacent training sequences. The sparse NBI signal can be accurately recovered from a time-domain measurement vector of small size under the CS framework, without requiring channel information or dedicated resources. Theoretical analysis and simulation results show that the proposed method is robust to NBI under multi-path fading channels.

  • Improved Resilience through Extended KVS-Based Messaging System

    Masafumi KINOSHITA  Osamu TAKADA  Izumi MIZUTANI  Takafumi KOIKE  Kenji LEIBNITZ  Masayuki MURATA  

     
    PAPER-Internet Operation and Management

      Pubricized:
    2014/12/11
      Vol:
    E98-D No:3
      Page(s):
    578-587

    In the big data era, messaging systems are required to process large volumes of message traffic with high scalability and availability. However, conventional systems have two issues regarding availability. The first issue is that failover processing itself has a risk of failure. The second issue is to find a trade-off between consistency and availability. We propose a resilient messaging system based on a distributed in-memory key-value store (KVS). Its servers are interconnected with each other and messages are distributed to multiple servers in normal processing state. This architecture can continue messaging services wherever in the messaging system server/process failures occur without using failover processing. Furthermore, we propose two methods for improved resilience: the round-robin method with a slowdown KVS exclusion and the two logical KVS counter-rotating rings to provide short-term-availability in the messaging system. Evaluation results demonstrate that the proposed system can continue service without failover processing. Compared with the conventional method, our proposed distribution method reduced 92% of error responses to clients caused by server failures.

  • A Scenario-Based Reliability Analysis Approach for Component-Based Software

    Chunyan HOU  Chen CHEN  Jinsong WANG  Kai SHI  

     
    PAPER-Software Engineering

      Pubricized:
    2014/12/04
      Vol:
    E98-D No:3
      Page(s):
    617-626

    With the rise of component-based software development, its reliability has attracted much attention from both academic and industry communities. Component-based software development focuses on architecture design, and thus it is important for reliability analysis to emphasize software architecture. Existing approaches to architecture-based software reliability analysis don't model the usage profile explicitly, and they ignore the difference between the testing profile and the practical profile of components, which limits their applicability and accuracy. In response to these issues, a new reliability modeling and prediction approach is introduced. The approach considers reliability-related architecture factors by explicitly modeling the system usage profile, and transforms the testing profile into the practical usage profile of components by representing the profile with input sub-domains. Finally, the evaluation experiment shows the potential of the approach.

  • Analysis of Noteworthy Issues in Illumination Processing for Face Recognition

    Min YAO  Hiroshi NAGAHASHI  

     
    PAPER-Image Recognition, Computer Vision

      Vol:
    E98-D No:3
      Page(s):
    681-691

    Face recognition under variable illumination conditions is a challenging task. Numbers of approaches have been developed for solving the illumination problem. In this paper, we summarize and analyze some noteworthy issues in illumination processing for face recognition by reviewing various representative approaches. These issues include a principle that associates various approaches with a commonly used reflectance model and the shared considerations like contribution of basic processing methods, processing domain, feature scale, and a common problem. We also address a more essential question-what to actually normalize. Through the discussion on these issues, we also provide suggestions on potential directions for future research. In addition, we conduct evaluation experiments on 1) contribution of fundamental illumination correction to illumination insensitive face recognition and 2) comparative performance of various approaches. Experimental results show that the approaches with fundamental illumination correction methods are more insensitive to extreme illumination than without them. Tan and Triggs' method (TT) using L1 norm achieves the best results among nine tested approaches.

  • Non-orthogonal Multiple Access (NOMA) with Successive Interference Cancellation for Future Radio Access Open Access

    Kenichi HIGUCHI  Anass BENJEBBOUR  

     
    Invited Survey Paper-Wireless Communication Technologies

      Vol:
    E98-B No:3
      Page(s):
    403-414

    This paper presents our investigation of non-orthogonal multiple access (NOMA) as a novel and promising power-domain user multiplexing scheme for future radio access. Based on information theory, we can expect that NOMA with a successive interference canceller (SIC) applied to the receiver side will offer a better tradeoff between system efficiency and user fairness than orthogonal multiple access (OMA), which is widely used in 3.9 and 4G mobile communication systems. This improvement becomes especially significant when the channel conditions among the non-orthogonally multiplexed users are significantly different. Thus, NOMA can be expected to efficiently exploit the near-far effect experienced in cellular environments. In this paper, we describe the basic principle of NOMA in both the downlink and uplink and then present our proposed NOMA scheme for the scenario where the base station is equipped with multiple antennas. Simulation results show the potential system-level throughput gains of NOMA relative to OMA.

  • Sum-Rate Analysis for Centralized and Distributed Antenna Systems with Spatial Correlation and Inter-Cell Interference

    Ou ZHAO  Hidekazu MURATA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E98-B No:3
      Page(s):
    449-455

    In order to verify the channel sum-rate improvement by multi-user multiple-input multiple-output (MU-MIMO) transmission in distributed antenna systems (DASs), we investigate and compare the characteristics of channel sum-rates in both centralized antenna systems (CASs) and DASs under the effects of path loss, spatially correlated shadowing, correlated multi-path fading, and inter-cell interference. In this paper, we introduce two different types of functions to model the shadowing, auto-correlation and cross-correlation, and a typical exponential decay function to model the multi-path fading correlation. Thus, we obtain the distribution of the channel sum-rate and investigate its characteristics. Computer simulation results indicate that DAS can improve the performance of the channel sum-rate compared to CAS, even in the case under consideration. However, this improvement decreases as interference power increases. Moreover, the decrease in the channel sum-rate due to the increase in the interference power becomes slow under the effect of shadowing correlation. In addition, some other analyses on the shadowing correlation that occurs on both the transmit and receiver sides are provided. These analysis results show that the average channel sum-rate in a DAS without inter-cell interference considerably decreases because of the shadowing correlation. In contrast, there appears to be no change in the CAS. Furthermore, there are two different types of sum-rate changes in a DAS because of the difference in shadowing auto-correlation and cross-correlation.

  • Resonant Tunneling Super Regenerative Detectors Detecting Higher Frequency Signals than Their Free-Running Oscillation Frequency

    Jie PAN  Yuichiro KAKUTANI  Taishu NAKAYAMA  Masayuki MORI  Koichi MAEZAWA  

     
    PAPER-Semiconductor Materials and Devices

      Vol:
    E98-C No:3
      Page(s):
    260-266

    Super regenerative detectors using a resonant tunneling diode (RTD) were fabricated and investigated for ultra-high frequency detectors. A key point is to use the RTD super regenerative detector for detecting much higher frequencies than the free-running oscillation frequency of the detector. This is possible owing to the superior high frequency characteristics of the RTDs. This has various advantages, such as circuit simplicity, easy design, and low power consumption. Clear detection of 50,GHz signal was demonstrated with a super regenerative detector which has 1.5,GHz free-running frequency. Moreover, detailed experiments revealed that the frequency dependence of the detection efficiency is smooth, and the harmonic frequencies have no effect. This is advantageous for high frequency detection.

4781-4800hit(21534hit)