The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] TE(21534hit)

17561-17580hit(21534hit)

  • Application of 1.55-µm Photonic Technology to Practical Millimeter-Wave Network Analysis

    Nabil SAHRI  Tadao NAGATSUMA  

     
    PAPER-Measurements

      Vol:
    E82-C No:7
      Page(s):
    1307-1311

    This paper presents a novel full-band optoelectronic system extending the capabilities of vector network measurements to the millimeter-wave regime both in small and large signal analysis. The design of the measurement system is made with an emphasis on its practicability for real-world applications using all 1.55-µm-wavelength-based photonic technology. We demonstrate the performance of this network analyzer by measuring the 2-port S-parameters of a HEMT device. The accuracy of the results is also shown by comparing them with conventional 50-GHz electronic measurements. The transit frequency of the active device of over 100 GHz is directly measured for the first time to our knowledge.

  • Delay Profile Measurement System for Microwave Broadband Transmission and Analysis of Delay Characteristics in an Urban Environment

    Hironari MASUI  Koichi TAKAHASHI  Satoshi TAKAHASHI  Kouzou KAGE  Takehiko KOBAYASHI  

     
    PAPER-Systems

      Vol:
    E82-C No:7
      Page(s):
    1287-1292

    There is currently a need for development of a new frequency band to enable creation of next-generation mobile communication systems. Of the potential bands, the 3 GHz and over microwave band holds the greatest promise. Experimental studies on the delay characteristics of multipath propagation must be conducted in order to achieve high-speed transmission in the microwave band. We have developed a system for measuring the microwave broadband propagation delay profile over 100 MHz spread bandwidths in the 3, 8 and 15 GHz bands. Our experiments confirmed system performances of 20-ns resolution, 40-µs maximum measurable delay, relative amplitude error of within 3 dB and dynamic range of over 60 dB. We used our system to measure delay profiles on an urban area with line of sight, particularly, in terms of the effects of mobile antenna height. Typical examples are presented. Analysis showed that delay spreads increased with transmit/receive distance and decreased with the higher antenna height.

  • Wavelet Matrix Transform Approach for Electromagnetic Scattering from an Array of Metal Strips

    Ning GUAN  Ken'ichiro YASHIRO  Sumio OHKAWA  

     
    PAPER-Propagation and Scattering

      Vol:
    E82-C No:7
      Page(s):
    1273-1279

    The wavelet matrix transform approach, in combination with the method of moments (MoM), is applied to solve the electromagnetic scattering problem of an array of metal strips. The problem is first discretized by the conventional MoM to obtain a dense impedance matrix, then the wavelet matrix transform is applied to produce a sparse matrix. This approach avoids a great number of integral computations existing in the wavelet basis expansion method and provides fast approach to solution for the scattering problem. Daubechies' wavelet is chosen as the mother wavelet to construct a sparse wavelet matrix so that the matrix-matrix multiplications occurring in the transform cost only O(N2) with N unknowns. Numerical tests show that the computation cost necessary for solving the resultant sparse matrix is only O(N log N). An appropriate choice of the number of vanishing moments of wavelets is suggested from consideration of total computation cost and accuracy of solutions.

  • Slot-Array Receiving Antennas Fed by Coplanar Waveguide for 700 GHz Submillimeter-Wave Radiation

    Hiroaki KOBAYASHI  Yasuhiko ABE  Yoshizumi YASUOKA  

     
    PAPER-Phased Arrays and Antennas

      Vol:
    E82-C No:7
      Page(s):
    1248-1252

    Thin-film slot-array receiving antennas fed by coplanar waveguide (CPW) were fabricated on fused quartz substrates, and the antenna properties were investigated at 700 GHz. It was confirmed that the transmission efficiency of CPW was 0.83/λm, and the rate of radiated power from a slot antenna was 0.5 at 700 GHz. The fabricated antennas worked as expected from the theory based on the transmission line model, and the two-dimensional 83 slot-array antenna fed by CPW increased the power gain by 11 dB over a single-slot antenna. The power gain of the antenna was 13 dBi and the aperture efficiency was 40% when the 700 GHz-submillimeter wave was irradiated through the substrate.

  • A K-Band Aperture-Coupled Microstrip Leaky-Wave Antenna

    Tai-Lee CHEN  Yu-De LIN  

     
    PAPER-Phased Arrays and Antennas

      Vol:
    E82-C No:7
      Page(s):
    1236-1241

    Microstrip leaky-wave antenna fed by an aperture-coupled microstrip operating at K-band is presented. Using the aperture-coupled microstrip as a feeding structure can fully exploit the wideband characteristic of the microstrip leaky-wave antenna. The dimensions of the antenna are obtained from the calculation of the propagation characteristics. Measurement shows a bandwidth of 22% for VSWR < 2:1 and a peak power gain of 12 dBi at 22 GHz for one element. Four-element array is developed with a gain of 18.7 dBi and the frequency-scanning feature is exhibited. The waveguide model is verified by measuring the 3-D radiation pattern of the microstrip leaky-wave array.

  • Radiation Characteristics of Active Frequency-Scanning Leaky-Mode Antenna Arrays

    Chien-Jen WANG  Christina F. JOU  Jin-Jei WU  Song-Tsuen PENG  

     
    PAPER-Phased Arrays and Antennas

      Vol:
    E82-C No:7
      Page(s):
    1223-1228

    Active frequency-tuning beam-scanning leaky-mode antenna arrays have been demonstrated in this paper. These antennas integrated one or several microstrip leaky-wave antenna elements with a single varactor-tuned HEMT VCO as an active source. Noted that the measured scan angles of the 11 and 14 antennas were approximately 24 and the scanning range of the 12 antenna was 20. Furthermore, reflected wave due to the open end of each leaky-wave antenna element has been suppressed by the symmetric configuration of this antenna array and the antenna efficiency increases. When comparing with the measured radiation pattern of the single element antenna, we found that the 12 and 14 antenna arrays can effectively suppress the reflected power by more than 5.5 dB and 10.5 dB, respectively, at 10.2 GHz. The power gain are more than 2 dB and 3.16 dB higher than the single element antenna with a measured EIRP of 18.67 dBm.

  • Circularly Polarized Cavity Backed Two-Element Rectangular Loop Slot Antenna

    Song SHI  Kazuhiro HIRASAWA  Zhi Ning CHEN  

     
    PAPER-Phased Arrays and Antennas

      Vol:
    E82-C No:7
      Page(s):
    1217-1222

    A cavity-backed two-element rectangular loop slot antenna for circular polarization is presented and investigated by using the generalized network formulation based on the equivalence principle. By applying the method of moments, the magnetic current including the effect of the cavity is obtained for a thin rectangular loop slot. Two short-circuiting points are introduced on the slots to get circular polarization and symmetrical radiation pattern. The axial ratio bandwidth (3 dB) with VSWR (2) reaches 7.6%. The measured and computed results are in good agreement.

  • A Multibeam Antenna Using Switched Parasitic and Switched Active Elements for Space-Division Multiple Access Applications

    Stephanie PRESTON  David THIEL  Jun LU  

     
    PAPER-Phased Arrays and Antennas

      Vol:
    E82-C No:7
      Page(s):
    1202-1210

    This paper describes a multibeam antenna which uses switched parasitic and switched active elements to obtain multiple simultaneous directional beams that can be steered in azimuth. A 13 element monopole multibeam array has been optimised for gain and front to back ratio. Results from numerical simulation and measurements in an anechoic chamber are presented. The 13 element array can achieve up to three beams simultaneously with a minimum gain over 360 azimuthal coverage of 1.2 dB less than the maximum gain. Located on a ground plane with diameter of 2λ at 1.5 GHz, the maximum elevation angle was 20.2 with -3 dB vertical beamwidth of 88.

  • Spatial Power Combining and Phased-Array Behavior of Circularly Polarized Active Patch Antennas

    Tomomichi KAGAWA  Shigeji NOGI  Minoru SANAGI  

     
    PAPER-Phased Arrays and Antennas

      Vol:
    E82-C No:7
      Page(s):
    1182-1187

    Design of circularly polarized active antennas of dual-fed square patch type is given, and spatial power combining and phased array operation of the antennas have been successfully achieved. In a phased array experiment of the arrays with two and three active antennas by the method of varying their free-running oscillation frequencies, we obtained the scan angles from -12 to +13 and those from -13 to +13, respectively, and good axial ratios together with high spatial power-combining efficiencies.

  • Automated Millimeter-Wave On-Wafer Testing System

    Takayuki KATOH  Takuo KASHIWA  Hiroyuki HOSHI  Akira INOUE  Takahide ISHIKAWA  

     
    PAPER-Measurements

      Vol:
    E82-C No:7
      Page(s):
    1312-1317

    A novel millimeter-wave on-wafer CAT(Computer-Aided-Testing ) system has been developed for measurement of S-parameters and NF ( Noise figure ). For the S-parameter test system, we have developed a holder setup and installed it in a semi-automatic wafer prober so that the waveguide-based T/R module can be directly connected to a probe-head through fixed waveguides, which feature low insertion loss of less than 2 dB, from 75 GHz to 98 GHz. The accuracy of the developed test system was confirmed by measuring, with this system, a co-planar offset short pattern then comparing measured and simulated results. A good agreement between the measured and calculated, in both return loss and return phase successfully demonstrated the superiority of the system. A W-band NF test system with a system noise of less than 8 dB has been also developed to provide an on-wafer NF measurement capability with an accuracy of 0.3 dB. These S-parameter and NF test systems possess great advantages to achieve high-speed automatic MMIC testing up to W-band.

  • High-Temperature Superconducting Receiving Filter Subsystem for Mobile Telecommunication Base Station

    Yoshiki UENO  Nobuyoshi SAKAKIBARA  Teruaki YAMADA  Mitsunari OKAZAKI  Masayuki AOKI  

     
    PAPER-Passive Devices and Circuits

      Vol:
    E82-C No:7
      Page(s):
    1172-1176

    High-temperature superconductor (HTS) receiving filter subsystem for mobile telecommunication base station has been developed. An 11-pole HTS filter using YBa2Cu3O7-δ (YBCO) thin films and a low noise amplifier were cooled to 70 K by a small cryocooler. Total noise figure of this subsystem was measured to be 0.5 dB. Furthermore the effect of using the subsystem in the receiver front-end of Code Division Multiple Access (CDMA) cellular base station was investigated. The transmitting power reduction of handy terminal was estimated to be about 35%.

  • Very-Wide-Angle Beam Propagation Methods for Integrated Optical Circuits

    Tetsuo ANADA  Toshikazu HOKAZONO  Takaharu HIRAOKA  Jui-Pang HSU  Trevor M. BENSON  Phillip SEWELL  

     
    PAPER-Passive Devices and Circuits

      Vol:
    E82-C No:7
      Page(s):
    1154-1158

    In this paper, outlines of the derivation of two recently developed finite difference beam propagation methods based on the higher-order Pad approximations are given to simulate the optical field propagation of tilted and turning waveguides. In order to investigate the accuracy and limitation for a propagation angle of these approaches, numerical results are presented for two benchmark tests. The present algorithms will offer, to our knowledge, the new beam propagation methods in optics.

  • Low Noise High-Gain Distributed Preamplifiers Using Cascaded Single Stage Distributed Amplifier Configurations

    Ben Y. BANYAMIN  Jia Yi LIANG  Colin S. AITCHISON  Michael BERWICK  

     
    PAPER-Active Devices and Circuits

      Vol:
    E82-C No:7
      Page(s):
    1039-1046

    In this paper 2-10 GHz hybrid-distributed preamplifiers using two and three cascaded single stage distributed amplifiers are demonstrated. These amplifiers produce available power gains significantly higher than conventional distributed preamplifiers using the same number of active devices. Simulation results show the advantage of the proposed preamplifier over the conventional one. Measured results of the two realised configurations of preamplifiers using two and three cascaded single stage distributed amplifiers are presented. Each configuration shows that the available power gain can be increased by increasing interstage characteristic impedance of the cascaded single stage distributed amplifiers. The measured available power gain for two stages shows an improvement from 18 dB to 20 dB, and for three stages an improvement from 26 dB to 31 dB across the 2-10 GHz frequency band, as the inter-stage characteristic impedance is increased from low to high level. Input and output return losses better than -10 dB, and input-output isolation better than -55 dB at the beginning of the band and better than -45 dB at the end are achieved. This approach also provides a good measured noise figure performance of an average of 4 dB across the 2-10 GHz frequency band for both two and three cascaded stages. The group delay of both cascaded amplifiers are measured. Its flat performance proves the viability of this approach which is suitable for digital optical communication and pulse applications.

  • 60 GHz Millimeter-Wave Test Bed for High Speed and Wide Band Communications

    Yong-Hoon KIM  Ki-Seok YANG  

     
    PAPER-Systems

      Vol:
    E82-C No:7
      Page(s):
    1301-1306

    The architecture design and test results of simulation facility named millimeter-wave Test Bed has been described. Contrast with a millimeter-wave sounder, the Test Bed proposed in this paper can characterize radio channels, received signals, target reflections and radio link performance at the millimeter-wave band of 60 GHz. For fixible simulation and analysis of the performances of newly designed millimeter-wave systems, major digital signal processing parts like a sophisticate waveform generator and an analyzer, a modulator, a demodulator, an encoder, a decoder, an equalizer in the Test Bed are implemented by a software using SPW. This software based Test Bed can be used as a "deign tool" for the simulation of the millimeter-wave communication systems very flexibly without hardware modification in different specifications. The Test Bed consists of a millimeter-wave transmitter, a receiver of 60 GHz, 1.95 GHz up/down converter as IF module and a digital signal processing module. The I/Q vector modulator and demodulator with a video bandwidth of 37.5 MHz in the Test Bed can simulate or test the application of high data rate communication systems of short distance.

  • New Design Approach to Multiple-Beam Forming Network for Beam-Steerable Phased Array Antennas

    Fumio KIRA  Kenji UENO  Takashi OHIRA  Hiroyo OGAWA  

     
    PAPER-Phased Arrays and Antennas

      Vol:
    E82-C No:7
      Page(s):
    1195-1201

    The onboard antenna beam forming network (BFN) of the next-generation communication satellites must offer multiple beam forming and beam steering. The conventional BFN, which directly controls the array elements, is not suitable for a large-scale array antenna because of the difficulty of BFN control. This paper proposes a new BFN configuration that consists of three/four-way variable power dividers and a Butler matrix (FFT circuit). This BFN can offer continuous beam steering with fewer variable components. By introducing new techniques based upon excluding FFT periods and power evaluations by definite integration, the deviation in beamwidth is reduced by 75% or more and the maximum sidelobe level is improved by 10 dB or more.

  • Design of a Bandpass Filter with Multiple Attenuation Poles Based on Tapped Resonators

    Kouji WADA  Ikuo AWAI  

     
    PAPER-Passive Devices and Circuits

      Vol:
    E82-C No:7
      Page(s):
    1116-1122

    An intrinsic property of a tapped resonator is elucidated here, and a novel bandpass filter (BPF) with improved skirt characteristics based on a tapped half-wavelength resonator is proposed by this intrinsic property. "Tapping" for both I/O and interstage couplings of the resonator is the key concept here because a resulting open-ended resonator makes shunt open stubs which give anti-resonance near the center frequency. Multiple attenuation poles appear near the center frequency, namely, close to the passband. A BPF is designed on the basis of the general filter theory with a narrow band approximation. An experiment is carried out to confirm the concept by using a coplanar structure. The expected bandpass characteristics with multiple attenuation poles have been obtained by the novel BPF designed by the present concept.

  • Prediction of Millimeter-Wave Multipath Propagation Characteristics in Mobile Radio Environment

    Kazunori KIMURA  Jun HORIKOSHI  

     
    PAPER-Propagation and Scattering

      Vol:
    E82-C No:7
      Page(s):
    1253-1259

    This paper presents a prediction of the millimeter-wave multipath propagation characteristics in the typical urban environment. To analyze the propagation in an outdoor environment, the three dimensional model based on the geometrical optics and the uniform geometrical theory of diffraction is employed. Prediction by the three dimensional ray tracing method needs a detailed map, which records locations and shapes of obstacles surrounding a transmitter and a receiver. It is usually difficult to create a complete map because tremendous data is necessary to describe the area structure. We propose, in this report, a three dimensional propagation model to predict the millimeter wave propagation characteristics by using the information available from only a map on the market. This approach gives us much convenience in the actual design. The modeled results are demonstrated and furthermore comparison are made between the simulated results and the experimental data.

  • A Phase Interpolation Direct Digital Synthesizer with a Symmetrically Structured Delay Generator

    Hideyuki NOSAKA  Tadao NAKAGAWA  Akihiro YAMAGISHI  

     
    PAPER-Active Devices and Circuits

      Vol:
    E82-C No:7
      Page(s):
    1067-1072

    We have developed a new type of phase interpolation direct digital synthesizer (DDS) with a symmetrically structured delay generator. The new DDS is similar to a sine output DDS in that it produces lower spurious signals, but it does not require a sine look-up table. The symmetrically structured delay generator reduces the periodic jitter in the most significant bit (MSB) of the DDS accumulator. The symmetrical structure enables the delay generator to produce highly accurate delay timing and eliminates the need to adjust the circuit constants. Experimental results confirm frequency synthesizer operation in which the spurious signal level is reduced to less than that of the accumulator.

  • Miniaturization of Microstrip Line and Coplanar Waveguide for Microwave Integrated Circuits by Using Airbridge Technology

    Keren LI  

     
    PAPER-Passive Devices and Circuits

      Vol:
    E82-C No:7
      Page(s):
    1159-1165

    This paper presents a technique for miniaturization of microstrip line and coplanar waveguide for microwave integrated circuits by using airbridge technology. A theoretical analysis is given by a combination of the conformal mapping technique and the variational principle. Numerical results demonstrate significant effects on size reduction as well as wide range of the characteristic impedance variation due to the airbridge.

  • Performance Evaluation of Trellis-Coded 16 and 32-APSK Schemes

    Eiichi SATO  Shigeo NAKAJIMA  

     
    PAPER

      Vol:
    E82-A No:7
      Page(s):
    1179-1184

    Multi-ary Trellis-Coded Modulation (TCM) schemes have been studied for use with digital radio communication systems. Among these TCM schemes, we have already reported the optimum signal constellation of a rate-3/4 trellis-coded (TC) 16-ary Amplitude and Phase Shift Keying (APSK) scheme and computed the minimum Euclidean distance: dfree. In this paper, we evaluate other performance parameters: Nfree and bit error rate (BER) over an additive white Gaussian noise channel, and further investigate the various signal constellations of rate-4/5 TC 32-APSK schemes. It is found that the BER performances of circular-type signal constellations are superior to that of rectangular-type in the TC 16-APSK, and a (24,8) circular type signal constellation is superior to other constellations in the TC 32-APSK.

17561-17580hit(21534hit)