Masakiyo FUJIMOTO Satoshi NAKAMURA
This paper addresses a speech recognition problem in non-stationary noise environments: the estimation of noise sequences. To solve this problem, we present a particle filter-based sequential noise estimation method for front-end processing of speech recognition in noise. In the proposed method, a noise sequence is estimated in three stages: a sequential importance sampling step, a residual resampling step, and finally a Markov chain Monte Carlo step with Metropolis-Hastings sampling. The estimated noise sequence is used in the MMSE-based clean speech estimation. We also introduce Polyak averaging and feedback into a state transition process for particle filtering. In the evaluation results, we observed that the proposed method improves speech recognition accuracy in the results of non-stationary noise environments a noise compensation method with stationary noise assumptions.
Hui QIN Tsutomu SASAO Yukihiro IGUCHI
This paper addresses a pipelined partial rolling (PPR) architecture for the AES encryption. The key technique is the PPR architecture. With the proposed architecture on the Altera Stratix FPGA, two PPR implementations achieve 6.45 Gbps throughput and 12.78 Gbps throughput, respectively. Compared with the unrolling implementation that achieves a throughput of 22.75 Gbps on the same FPGA, the two PPR implementations improve the memory efficiency (i.e., throughput divided by the size of memory for core) by 13.4% and 12.3%, respectively, and reduce the amount of the memory by 75% and 50%, respectively. Also, the PPR implementation has a up to 9.83% higher memory efficiency than the fastest previous FPGA implementation known to date. In terms of resource efficiency (i.e., throughput divided by the equivalent logic element or slice), one PPR implementation offers almost the same as the rolling implementation, and the other PPR implementation offers a medium value between the rolling implementation and the unrolling implementation that has the highest resource efficiency. However, the two PPR implementations can be implemented on the minimum-sized Stratix FPGA while the unrolling implementation cannot. The PPR architecture fills the gap between unrolling and rolling architectures and is suitable for small and medium-sized FPGAs.
Toshiaki KOIKE Yukinaga SEKI Hidekazu MURATA Susumu YOSHIDA Kiyomichi ARAKI
We developed two types of practical maximum-likelihood detectors (MLD) for multiple-input multiple-output (MIMO) systems, using a field programmable gate array (FPGA) device. For implementations, we introduced two simplified metrics called a Manhattan metric and a correlation metric. Using the Manhattan metric, the detector needs no multiplication operations, at the cost of a slight performance degradation within 1 dB. Using the correlation metric, the MIMO-MLD can significantly reduce the complexity in both multiplications and additions without any performance degradation. This paper demonstrates the bit-error-rate performance of these MLD prototypes at a 1 Gbps-order real-time processing speed, through the use of an all-digital baseband 44 MIMO testbed integrated on the same FPGA chip.
Chulgyun PARK Jun-ichi TAKADA Kei SAKAGUCHI Takashi OHIRA
In this paper we propose a novel spatial fading simulator to evaluate the performance of an array antenna and show its spatial stochastic characteristics by computer simulation based on parameters verified by experimental data. We introduce a cavity-excited circular array (CECA) as a fading simulator that can simulate realistic mobile communication environments. To evaluate the antenna array, two stochastic characteristics are necessary. The first one is the fading phenomenon and the second is the angular spread (AS) of the incident wave. The computer simulation results with respect to fading and AS show that CECA works well as a spatial fading simulator for performance evaluation of an antenna array. We first present the basic structure, features and design methodology of CECA, and then show computer simulation results of the spatial stochastic characteristics. The results convince us that CECA is useful to evaluate performance of antenna arrays.
Takehiro IHARA Takayuki NAGAI Kazuhiko OZEKI Akira KUREMATSU
We present a novel approach for single-channel noise reduction of speech signals contaminated by additive noise. In this approach, the system requires speech samples to be uttered in advance by the same speaker as that of the input signal. Speech samples used in this method must have enough phonetic variety to reconstruct the input signal. In the proposed method, which we refer to as referential reconstruction, we have used a small database created from examples of speech, which will be called reference signals. Referential reconstruction uses an example-based approach, in which the objective is to find the candidate speech frame which is the most similar to the clean input frame without noise, although the input frame is contaminated with noise. When candidate frames are found, they become final outputs without any special processing. In order to find the candidate frames, a correlation coefficient is used as a similarity measure. Through automatic speech recognition experiments, the proposed method was shown to be effective, particularly for low-SNR speech signals corrupted with white noise or noise in high-frequency bands. Since the direct implementation of this method requires infeasible computational cost for searching through reference signals, a coarse-to-fine strategy is introduced in this paper.
Dai-boong LEE Hwangjun SONG Inkyu LEE
Differentiated-services model has been prevailed as a scalable solution to provide quality of service over the Internet. Many researches have been focused on per hop behavior or a single domain behavior to enhance quality of service. Thus, there are still difficulties in providing the end-to-end guaranteed service when the path between sender and receiver includes multiple domains. Furthermore differentiated-services model mainly considers quality of service for traffic aggregates due to the scalability, and the quality of service state may be time varying according to the network conditions in the case of relative service model, which make the problem more challenging to guarantee the end-to-end quality-of-service. In this paper, we study class mapping mechanisms along the path to provide the end-to-end guaranteed quality of service with the minimum networking price over multiple differentiated-services domains. The proposed mechanism includes an effective implementation of relative differentiated-services model, quality of service advertising mechanism and class selecting mechanisms. Finally, the experimental results are provided to show the performance of the proposed algorithm.
Kazuhisa YAMAGISHI Takanori HAYASHI
We propose the concept of an opinion model for interactive multimodal services and apply it to an audiovisual communication service. First, psychological factors of an audiovisual communication service were extracted by using the semantic differential (SD) technique and factor analysis. Forty subjects participated in subjective tests and performed point-to-point conversational tasks on a PC-based video phone that exhibited various network qualities. The subjects assessed those qualities on the basis of 25 pairs of adjectives. Two psychological factors, i.e., an aesthetic feeling and a feeling of activity, were extracted from the results. Then, quality impairment factors affecting these two psychological factors were analyzed. We found that the aesthetic feeling was affected by IP packet loss and video coding bit rate, and the feeling of activity depended on delay time, video packet loss, video coding bit rate, and video frame rate. Using this result, we formulated an opinion model derived from the relationships among quality impairment factors, psychological factors, and overall quality. The validation test results indicated that the estimation error of our model was almost equivalent to the statistical reliability of the subjective score.
In many parallel programs, run-time array redistribution is usually required to enhance data locality and reduce remote memory access on the distributed memory multicomputers. In general, array distribution can be classified into regular distribution and irregular distribution according to the distribution fashion. Many methods for performing regular array redistribution have been presented in the literature. However, for the heterogeneous computation environment, irregular array redistributions can be used to adjust data assignment at run-time. In this paper, an Essential Cycle Calculation method for unequal block sizes array redistribution is presented. In the ECC method, a processor first computes the source/destination processor/data sets of array elements in the first essential cycle of the local array it owns. From the source/destination processor/data sets of array elements in the first essential cycle, we can construct packing/unpacking pattern tables. Since each essential cycle has the same communication pattern, based on the packing/unpacking pattern tables, a processor can pack/unpack array elements efficiently. To evaluate the performance of the ECC method, we have implemented this method on an IBM SP2 parallel machine and compare it with the Sequence method. The cost models for these methods are also presented. The experimental results show that the ECC method greatly outperforms the Sequence method for all test samples.
Gooyoun HWANG Jitae SHIN JongWon KIM
This paper introduces a network-aware video delivery framework where the quality-of-service (QoS) interaction between prioritized packet video and relative differentiated service (DiffServ) network is taken into account. With this framework, we propose a dynamic class mapping (DCM) scheme to allow video applications to cope with service degradation and class-based resource constraint in a time-varying network environment. In the proposed scheme, an explicit congestion notification (ECN)-based feedback mechanism is utilized to notify the status of network classes and the received service quality assessment to the end-host applications urgently. Based on the feedback information, DCM agent at ingress point can dynamically re-map each packet onto a network class in order to satisfy the desired QoS requirement. Simulation results verify the enhanced QoS performance of the streaming video application by comparing the static class-mapping and the class re-mapping based on loss-driven feedback.
Hee Jung LEE Young-Ho PARK Taekyoung KWON
In RSA public-key cryptosystem, a small private key is often preferred for efficiency but such a small key could degrade security. Thus the Chinese Remainder Theorem (CRT) is tactically used, especially in time-critical applications like smart cards. As for using the CRT in RSA, care must be taken to resist partial key exposure attacks. While it is common to choose two distinct primes with similar size in RSA, May has shown that a composite modulus N can be factored in the balanced RSA with the CRT of half of the least (or most) significant bits of a private key is revealed with a small public key. However, in the case that efficiency is more critical than security, such as smart cards, unbalanced primes might be chosen. Thus, we are interested in partial key exposure attacks to the unbalanced RSA with the CRT. In this paper, we obtain the similar results as the balanced RSA. We show that in the unbalanced RSA if the N1/4 least (or most) significant bits are revealed, a private key can be recovered in polynomial time under a small public key.
Owen Noel Newton FERNANDO Kazuya ADACHI Uresh DUMINDUWARDENA Makoto KAWAGUCHI Michael COHEN
Our group is exploring interactive multi- and hypermedia, especially applied to virtual and mixed reality multimodal groupware systems. We are researching user interfaces to control source→sink transmissions in synchronous groupware (like teleconferences, chatspaces, virtual concerts, etc.). We have developed two interfaces for privacy visualization of narrowcasting (selection) functions in collaborative virtual environments (CVES): for a workstation WIMP (windows/icon/menu/pointer) GUI (graphical user interface), and for networked mobile devices, 2.5- and 3rd-generation mobile phones. The interfaces are integrated with other CVE clients, interoperating with a heterogeneous multimodal groupware suite, including stereographic panoramic browsers and spatial audio backends & speaker arrays. The narrowcasting operations comprise an idiom for selective attention, presence, and privacy-- an infrastructure for rich conferencing capability.
Wonjun LEE Eunkyo KIM Dongshin KIM Choonhwa LEE
Management of applications in the new world of pervasive computing requires new mechanisms to be developed for admission control, QoS negotiation, allocation and scheduling. To solve such resource-allocation and QoS provisioning problems within pervasive and ubiquitous computational environments, distribution and decomposition of the computation are important. In this paper we present a QoS-based welfare economic resource management model that models the actual price-formation process of an economy. We compare our economy-based approach with a mathematical approach we previously proposed. We use the constructs of application benefit functions and resource demand functions to represent the system configuration and to solve the resource allocation problems. Finally empirical studies are conducted to evaluate the performance of our proposed pricing model and to compare it with other approaches such as priority-based scheme and greedy method.
Chih-Yuan LIN Jwo-Yuh WU Ta-Sung LEE
Conventional orthogonal frequency division multiplexing (OFDM) system utilizes cyclic prefix (CP) to remove the channel-induced inter-symbol interference (ISI) at the cost of lower spectral efficiency. In this paper, a generalized sidelobe canceller (GSC) based equalizer for ISI suppression is proposed for uplink multi-antenna OFDM systems without CP. Based on the block representation of the CP-free OFDM system, there is a natural formulation of the ISI suppression problem under the GSC framework. By further exploiting the signal and ISI signature matrix structures, a computationally efficient partially adaptive (PA) implementation of the GSC-based equalizer is proposed for complexity reduction. The proposed scheme can be extended for the design of a pre-equalizer, which pre-suppresses the ISI and realizes CP-free downlink transmission to ease the computational burden of the mobile unit (MU). Simulation results show that the proposed GSC-based solutions yield equalization performances almost identical to that obtained by the conventional CP-based OFDM systems and are highly resistant to the increase in channel delay spread.
This paper presents the design of low-power low-noise 10 GHz CMOS monolithic integrated LC VCOs suitable for data clock recovery architectures in optical receivers of SDH (STM-64) and SONET (OC-192). Optimizations of device parameters and passive components are given in detail. For passive components, differential and single-ended inductor structures as well as MOS varactors with and without lightly doped drain/source (LDD) implantation have been investigated. The VCOs implemented in a 0.18 µm process demonstrate the single-side-band phase noise of as low as -107 dBc/Hz at 1 MHz offset and 21% tuning range while consuming only 7 mW under 1.8 V supply.
In this paper, we propose an efficient rate and power allocation scheme for multiuser OFDM systems to minimize the total transmit power under the given QoS requirements. We deduce the optimal solution of transmit power minimization problem and develop a suboptimal algorithm with low complexity based on the theoretical analysis. Because of the avoidance of iterative procedure, it is less complex than the existing schemes. The simulation results show that our proposal outperforms the existing schemes and it is very close to the optimal solution.
This paper proposes a block-based video encoder employing variable frame skipping (VFS) to improve the video quality in low bit rate channel. The basic idea of VFS mechanism is to decide and skip a suitable, non-fixed number of frames in temporal domain to reduce bit usage. The saved bits can be allocated to enhance the spatial quality of video. In literature, several methods of frame skipping decision have been proposed, but most of them only consider the similarities between neighboring coded frames as the decision criteria. Our proposed method takes into account the reconstruction of the skipped frames using motion-compensated frame interpolation at decoder. The proposed VFS models the reconstructed objective quality of the skipped frame and, therefore, can provide a fast estimate to the frame skipping at encoder. The proposed VFS can determine the suitable frame skipping in real time and provide the encoded video with better spatial-temporal bit allocation.
Masao MORIMOTO Yoshinori TANAKA Makoto NAGATA Kazuo TAKI
This paper proposes a logic synthesis technique for asymmetric slope differential dynamic logic (ASDDL) circuits. The technique utilizes a commercially available logic synthesis tool that has been well established for static CMOS logic design, where an intermediate library is devised for logic synthesis likely as static CMOS, and then a resulting synthesized circuit is translated automatically into ASDDL implementation at the gate-level logic schematic level as well as at the physical-layout level. A design example of an ASDDL 16-bit multiplier synthesized in a 0.18-µm CMOS technology shows an operation delay time of 1.82 nsec, which is a 32% improvement over a static CMOS design with a static logic standard-cell library that is finely tuned for energy-delay products. Design with the 16-bit multiplier led to a design time for an ASDDL based dynamic digital circuit 300 times shorter than that using a fully handcrafted design, and comparable with a static CMOS design.
Chia Yee OOI Thomas CLOUQUEUR Hideo FUJIWARA
This paper introduces τk notation to be used to assess test generation complexity of classes of sequential circuits. Using τk notation, we reconsider and restate the time complexity of test generation for existing classes of acyclic sequential circuits. We also introduce a new DFT method called feedback shift register (FSR) scan design technique, which is extended from the scan design technique. Therefore, for a given sequential circuit, the corresponding FSR scan designed circuit has always equal or lower area overhead and test application time than the corresponding scan designed circuit. Furthermore, we identify some new classes of sequential circuits that contain some cyclic sequential circuits, which are τ-equivalent and τ2-bounded. These classes are the l-length-bounded testable circuits, l-length-bounded validity-identifiable circuits, t-time-bounded testable circuits and t-time-bounded validity-identifiable circuits. In addition, we provide two examples of circuits belonging to these classes, namely counter-cycle finite state machine realizations and state-shiftable finite state machine realizations. Instead of using a DFT method, a given sequential circuit described at the finite state machine (FSM) level can be synthesized using another test methodology called synthesis for testability (SFT) into a circuit that belongs to one of the easily testable classes of cyclic sequential circuits.
The partial projection filter (PTPF) for a given observation operator provides an optimal signal restoration in the presence of both the signal space and observation space noises. However, restoration error by the filter still depends on the observation operator which consists of measurement and sampling processes. In this paper, we determine a sampling operator which minimizes the restoration error by the PTPF. We see that under some assumptions about noise statistics, the restoration error by the PTPF is divided into two terms corresponding to the error arising from the signal space noise and that from the observation space noise. It has been found that although the restoration error due to the signal space noise is independent of the sampling operator, the restoration error arising from the observation space noise can arbitrarily be decreased by increasing the number of sample points in the proposed sampling operator. An illustrative example of optimal sampling in the trigonometric polynomial space is also given.
Minoru KOMATSU Hideaki WAKABAYASHI Jiro YAMAKITA
The relative permittivity and permeability are discontinuous at the grating profile, and the electric and magnetic flux densities are continuous. As for the method of analysis for scattering waves by surface relief gratings placed in conical mounting, the spatial harmonic expansion approach of the flux densities are formulated in detail and the validity of the approach is shown numerically. The present method is effective for uniform regions such as air and substrate in addition to grating layer. The matrix formulations are introduced by using numerical calculations of the matrix eigenvalue problem in the grating region and analytical solutions separated for TE and TM waves in the uniform region are described. Some numerical examples for linearly and circularly polarized incidence show the usefulness of the flux densities expansion approach.