The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] TIA(1376hit)

621-640hit(1376hit)

  • Traffic Adaptive Contention Differentiation Scheme for LR-WPANs

    Wook KIM  Heungwoo NAM  Sunshin AN  

     
    LETTER-QoS and Quality Management

      Vol:
    E92-D No:10
      Page(s):
    1945-1948

    IEEE 802.15.4 is a new standard, uniquely designed for low rate wireless personal area networks (LR-WPANs). It targets ultra-low complexity, cost, and power, for low-data-rate wireless connectivity. However, one of the main problems of this new standard is its insufficient, and inefficient, media access control (MAC) for priority data. This paper introduces an extended contention access period (XCAP) concept for priority packets, also an traffic adaptive contention differentiation utilizing the XCAP (TACDX). The TACDX determines appropriate transmission policy alternatively according to the traffic conditions and type of packet. TACDX achieves not only enhanced transmission for priority packets but it also has a high energy efficiency for the overall network. The proposed TACDX is verified with simulations to measure the performances.

  • Performance Evaluation of Wireless Sensor Network Based on MIMO Relaying Channel Capacity

    KY LENG  Kei SAKAGUCHI  Kiyomichi ARAKI  

     
    PAPER-Network

      Vol:
    E92-B No:10
      Page(s):
    3166-3173

    In this paper, the performance of the Wireless Sensor Network (WSN) using fixed relay nodes and Multiple-Input Multiple-Output (MIMO) technology was evaluated based on the correlated channel capacity of MIMO system and the number of sensor node served by the system. Moreover, the performance evaluation of the proposed algorithm, which is used to find the optimum distance to place the relay nodes from sink node, is done not only with AF relaying and spatial correlation effect, but also with Decode-and-Forward (DF) relaying scheme. The results show that the relay gain (a ratio between the maximum number of sensors satisfying the required channel capacity in 7-cell topology to the number of sensor nodes in sink cell) is affected strongly by the spatial correlation at high required channel capacity but little at low required channel capacity. The results also show that the relay gain can be improved remarkably by using the DF relaying scheme, and that the validity of the proposed algorithm holds for any relaying scheme, spatial correlation effect and different antenna size.

  • End-to-End Loss Differentiation Algorithm Based on Estimation of Queue Usage in Multi-Hop Wireless Networks

    Mi-Young PARK  Sang-Hwa CHUNG  Prasanthi SREEKUMARI  

     
    PAPER-Networks

      Vol:
    E92-D No:10
      Page(s):
    2082-2093

    When TCP operates in multi-hop wireless networks, it suffers from severe performance degradation. This is because TCP reacts to wireless packet losses by unnecessarily decreasing its sending rate. Although previous loss differentiation algorithms (LDAs) can identify some of the packet losses due to wireless transmission errors as wireless losses, their accuracy is not high as much as we expect, and these schemes cannot avoid sacrificing the accuracy of congestion loss discrimination by misclassifying congestion losses as wireless losses. In this paper, we suggest a new end-to-end loss differentiation scheme which has high accuracy in both wireless loss discrimination and congestion loss discrimination. Our scheme estimates the rate of queue usage using information available to TCP. If the estimated queue usage is larger than 50% when a packet is lost, our scheme diagnoses the packet loss as congestion losses. Otherwise, it diagnoses the packet loss as wireless losses. Because the estimated queue usage is highly correlated to congestion, our scheme has an advantage to more exactly identify packet losses related to congestion and those unrelated to congestion. Through extensive simulations, we compare and evaluate our scheme with previous LDAs in terms of correlation, accuracy, and stability. And the results show that our scheme has the highest accuracy as well as its accuracy is more reliable than the other LDAs.

  • Adaptive Tracker Design with Identifier for Pendulum System by Conditional LMI Method and IROA

    Jiing-Dong HWANG  Zhi-Ren TSAI  

     
    PAPER-Systems and Control

      Vol:
    E92-A No:9
      Page(s):
    2266-2274

    This paper proposes a robust adaptive fuzzy PID control scheme augmented with a supervisory controller for unknown systems. In this scheme, a generalized fuzzy model is used to describe a class of unknown systems. The control strategy allows each part of the control law, i.e., a supervisory controller, a compensator, and an adaptive fuzzy PID controller, to be designed incrementally according to different guidelines. The supervisory controller in the outer loop aims at enhancing system robustness in the face of extra disturbances, variation in system parameters, and parameter drift in the adaptation law. Furthermore, an H∞ control design method using the fuzzy Lyapunov function is presented for the design of the initial control gains that guarantees transient performance at the start of closed-loop control, which is generally overlooked in many adaptive control systems. This design of the initial control gains is a compound search strategy called conditional linear matrix inequality (CLMI) approach with IROA (Improved random optimal algorithm), it leads to less complex designs than a standard LMI method by fuzzy Lyapunov function. Numerical studies of the tracking control of an uncertain inverted pendulum system demonstrate the effectiveness of the control strategy. From results of this simulation, the generalized fuzzy model reduces the rule number of T-S fuzzy model indeed.

  • Evolution Trends of Wireless MIMO Channel Modeling towards IMT-Advanced Open Access

    Chia-Chin CHONG  Fujio WATANABE  Koshiro KITAO  Tetsuro IMAI  Hiroshi INAMURA  

     
    INVITED SURVEY PAPER

      Vol:
    E92-B No:9
      Page(s):
    2773-2788

    This paper describes an evolution and standardization trends of the wireless channel modeling activities towards IMT-Advanced. After a background survey on various channel modeling approaches is introduced, two well-known multiple-input-multiple-output (MIMO) channel models for cellular systems, namely, the 3GPP/3GPP2 Spatial Channel Model (SCM) and the IMT-Advanced MIMO Channel Model (IMT-Adv MCM) are compared, and their main similarities are pointed out. The performance of MIMO systems is greatly influenced by the spatial-temporal correlation properties of the underlying MIMO channels. Here, we investigate the spatial-temporal correlation characteristics of the 3GPP/3GPP2 SCM and the IMT-Adv MCM in term of their spatial multiplexing and spatial diversity gains. The main goals of this paper are to summarize the current state of the art, as well as to point out the gaps in the wireless channel modeling works, and thus hopefully to stimulate research in these areas.

  • Flow-Level Fair Queue Management Scheme Stabilizing Buffer Utilization

    Yusuke SHINOHARA  Norio YAMAGAKI  Hideki TODE  Koso MURAKAMI  

     
    PAPER-Network

      Vol:
    E92-B No:9
      Page(s):
    2838-2850

    Multimedia traffic on the Internet is rapidly increasing with the advent of broadband networks. However, the Best-Effort (BE) service used with Internet Protocol (IP) networking was never intended to guarantee Quality of Service (QoS) for each user. Therefore, the realization of QoS guarantees has become a very important issue. Previously, we have proposed a queue management scheme, called Dual Metrics Fair Queuing (DMFQ), to improve fairness and to guarantee QoS. DMFQ improves fairness and throughput by considering the amount of instantaneous and historical network resources consumed per flow. In addition, DMFQ has characteristics of high speed and high scalability because it is hardware oriented. However, DMFQ may be unable to adapt to network fluctuations, given that it has static setup parameters. Moreover, DMFQ is unable to support a multiclass environment. In this paper, we propose a new buffer management scheme based on DMFQ that can adapt flexibly to network conditions and can provide classified services. The proposed scheme stabilizes buffer utilization within a fixed range by controlling the buffer threshold, which affects the calculated packet discard probability. Moreover, by applying the proposed scheme to Differentiated Services (DiffServ), we achieve prioritized buffer management.

  • An L-Band 4-Bit RL/RC-Switched Active Phase Shifter Using Differential Switches

    Kenji NAKAMURA  Yasushi ITOH  

     
    PAPER

      Vol:
    E92-C No:9
      Page(s):
    1170-1175

    An L-band 4-bit RL/RC-switched active phase shifter using differential switches is developed. It employs RL/RC circuits in the design of series feedback loops of the quadrature differential amplifier and achieves 90, 45, and 22.5of phase shift by switching on and off the RL/RC circuits alternatively. On the other hand, a 180phase shift is achieved with the use of a phase difference between the differential outputs. By cascading all four bits, an insertion gain of 16 to 23 dB, a phase error of less than 8.5, and an RMS phase error of 4.6have been achieved at 1 GHz.

  • A Novel Spatial Power Combiner Amplifier Based on SIW/HMSIW

    Haiyan JIN  Guangjun WEN  Xiaorong JING  Li JIAN  Tianqi ZHANG  

     
    LETTER-Microwaves, Millimeter-Waves

      Vol:
    E92-C No:8
      Page(s):
    1098-1101

    In this paper, a novel eight-way Ka-band spatial power combining structure based on SIW/HMSIW is presented and studied. The power-combining structure is realized by transitions between HMSIW and parallel multiport planar microstrip lines. The power combiner is designed and fabricated in 33.5-35 GHz. The measured results show a good agreement with simulation and a combining efficiency of 72% is achieved at 34.3 GHz.

  • Performance of Block-Double Differential Design for Broadband Cooperative Communications with Carrier Frequency Offsets

    Zhenzhen GAO  Shihua ZHU  Jing XU  Zhimeng ZHONG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E92-B No:7
      Page(s):
    2507-2511

    In this letter, a relay-assisted transmission scenario over frequency-selective fading channels perturbed by different random carrier frequency offsets is considered. OFDM and block-double differential (BDD) design are implemented to overcome the problem of intersymbol interference (ISI) and carrier frequency offsets (CFOs). We analyze the symbol error rate (SER) performance of decode-and-forward relaying with BDD design in wireless cooperative communications over frequency-selective fading channels and derive a theoretical upper bound for average SER when the relay (R) is error free. It can be seen from our analysis that the system performance is influenced by the ability of R to decode, and when R decodes without error, both spatial and multipath diversity can be obtained without requiring any knowledge of channel state information and CFO information at the receivers. Numerical examples are provided to corroborate our theoretical analysis.

  • Synchronization Scheme for Frame Differential IR-UWB Receivers

    Jyh-Horng WEN  Hsi-Chou HSU  Po-Wei CHEN  

     
    PAPER-Transmission Systems and Transmission Equipment for Communications

      Vol:
    E92-B No:7
      Page(s):
    2389-2396

    Synchronization poses a major challenge in ultra wideband (UWB) systems due to low signal duty cycles in UWB. This study develops an effective synchronization scheme for frame-differential IR-UWB receivers to improve the synchronization speed. The proposed parallel search mechanism reduces the search region of the symbol boundaries to only a single frame duration. Moreover, only one delay element is needed in each branch, since a shared looped delay-line (SLD) is also proposed to lower the implementation complexity of the parallel search mechanism. Simulations and performance analysis show that the proposed scheme achieves a lower mean square error and a higher probability of detection than other alternatives.

  • Characterizing Intra-Die Spatial Correlation Using Spectral Density Fitting Method

    Qiang FU  Wai-Shing LUK  Jun TAO  Changhao YAN  Xuan ZENG  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E92-A No:7
      Page(s):
    1652-1659

    In this paper, a spectral domain method named the SDF (Spectral Density Fitting) method for intra-die spatial correlation function extraction is presented. Based on theoretical analysis of random field, the spectral density, as the spectral domain counterpart of correlation function, is employed to estimate the parameters of the correlation function effectively in the spectral domain. Compared with the existing extraction algorithm in the original spatial domain, the SDF method can obtain the same quality of results in the spectral domain. In actual measurement process, the unavoidable measurement error with arbitrary frequency components would greatly confound the extraction results. A filtering technique is further developed to diminish the high frequency components of the measurement error and recover the data from noise contamination for parameter estimation. Experimental results have shown that the SDF method is practical and stable.

  • Low-Complexity SLM and PTS Schemes for PAPR Reduction in OFDM Systems

    Chin-Liang WANG  Yuan OUYANG  Ming-Yen HSU  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E92-B No:7
      Page(s):
    2420-2425

    One major drawback of orthogonal frequency-division multiplexing is the high peak-to-average power ratio (PAPR) of the output signal. The selected mapping (SLM) and partial transmit sequences (PTS) methods are two promising techniques for PAPR reduction. However, to generate a set of candidate signals, these techniques need a bank of inverse fast Fourier transforms (IFFT's) and thus require high computational complexity. In this paper, we propose two low-complexity multiplication-free conversion processes to replace the IFFT's in the SLM method, where each conversion process for an N-point IFFT involves only 3N complex additions. Using these proposed conversions, we develop several new SLM schemes and a combined SLM & PTS method, in which at least half of the IFFT blocks are reduced. Computer simulation results show that, compared to the conventional methods, these new schemes have approximately the same PAPR reduction performance under the same number of candidate signals for transmission selection.

  • Recent Advances in Ultra-High-Speed Waveguide Photodiodes for Optical Communication Systems Open Access

    Kikuo MAKITA  Kazuhiro SHIBA  Takeshi NAKATA  Emiko MIZUKI  Sawaki WATANABE  

     
    INVITED PAPER

      Vol:
    E92-C No:7
      Page(s):
    922-928

    This paper describes the recent advances in semiconductor photodiodes for use in ultra-high-speed optical systems. We developed two types of waveguide photodiodes (WG-PD) -- an evanescently coupled waveguide photodiode (EC-WG-PD) and a separated-absorption-and-multiplication waveguide avalanche photodiode (WG-APD). The EC-WG-PD is very robust under high optical input operation because of its distribution of photo current density along the light propagation. The EC-WG-PD simultaneously exhibited a high external quantum efficiency of 70% for both 1310 and 1550 nm, and a wide bandwidth of more than 40 GHz. The WG-APD, on the other hand, has a wide bandwidth of 36.5 GHz and a gain-bandwidth product of 170 GHz as a result of its small waveguide mesa structure and a thin multiplication layer. Record high receiver sensitivity of -19.6 dBm at 40 Gbps was achieved. Additionally, a monolithically integrated dual EC-WG-PD for differential phase shift-keying (DPSK) systems was developed. Each PD has equivalent characteristics with 3-dB-down bandwidth of more than 40 GHz and external quantum efficiency of 70% at 1550 nm.

  • Prediction of EM Radiation from a PCB Driven by a Connected Feed Cable

    Yoshiki KAYANO  Hiroshi INOUE  

     
    PAPER

      Vol:
    E92-B No:6
      Page(s):
    1920-1928

    Printed circuit boards (PCBs) driven by a connected feed cable are considered to be one of the main sources of the electromagnetic interference (EMI) from electronic devices. In this paper, a method for predicting the electromagnetic (EM) radiation from a PCB driven by a connected feed cable at up to gigahertz frequencies is proposed and demonstrated. The predictive model is based on the transmission line theory and current- and voltage-driven CM generation mechanisms with consideration of antenna impedance. Frequency responses of differential-mode (DM) and common-mode (CM) currents and far-electric field were investigated experimentally and with finite-difference time-domain (FDTD) modeling. First, the dominant component in total EM radiation from the PCB was identified by using the Source-Path-Antenna model. Although CM can dominate the total radiation at lower frequencies, DM is the dominant component above 3 GHz. Second, the method for predicting CM component at lower frequencies is proposed. And its validity was discussed by comparing FDTD calculated and measured results. Specifically, the relationship between the CM current and the terminating resistor was focused as important consequence for the prediction. Good agreement between the measured and predicted results shows the validity of the predicted results. The proposed model can predict CM current with sufficient accuracy, and also identify the primary coupling-mechanism of CM generation. Then far-electric field was predicted by using the proposed method, and it was demonstrated that outline of the frequency response of the undesired EM radiation from the PCB driven by the connected feed cable can be predicted with engineering accuracy (within 6 dB) up to 18 GHz. Finally, as example of application of equivalent circuit model to EMC design, effect of the width of the ground plane was predicted and discussed. The equivalent circuit model provides enough flexibility for different geometrical parameters and increases our ability to provide insights and design guidelines.

  • Frequency-Domain Partial Response Coding for Alamouti SFBC-OFDM System in Doubly Selective Channels

    Jung Min CHOI  Jae Hong LEE  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E92-B No:6
      Page(s):
    2298-2302

    Time variation within an OFDM symbol causes inter-carrier interference (ICI). In this letter, frequency-domain partial response coding (PRC) is investigated to reduce ICI in the Alamouti SFBC-OFDM system. Based on the expression of the ICI power in the SFBC-OFDM system with PRC, the near-optimal weights of PRC are derived. Simulation results show that the PRC scheme can reduce ICI effectively.

  • Efficient Partial Reluctance Extraction for Large-Scale Regular Power Grid Structures

    Shan ZENG  Wenjian YU  Jin SHI  Xianlong HONG  Chung-Kuan CHENG  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E92-A No:6
      Page(s):
    1476-1484

    Inductive effect becomes important for on-chip global interconnects, like the power/ground (P/G) grid. Because of the locality property of partial reluctance, the inverse of partial inductance, the window-based partial reluctance extraction has been applied for large-scale interconnect structures. In this paper, an efficient method of partial reluctance extraction is proposed for large-scale regular P/G grid structures. With a block reuse technique, the proposed method makes full use of the structural regularity of the P/G grid. Numerical results demonstrate the proposed method is able to efficiently handle a P/G grid with up to one hundred thousands wire segments. It is several tens times faster than the window-based method, while generating accurate frequency-dependent partial reluctance and resistance.

  • On Robust Approximate Feedback Linearization: A Nonlinear Control Approach

    Ho-Lim CHOI  Jong-Tae LIM  

     
    LETTER-Systems and Control

      Vol:
    E92-A No:6
      Page(s):
    1535-1537

    In this letter, we consider a problem of global stabilization of a class of approximately feedback linearized systems. We propose a new nonlinear control approach which includes a nonlinear controller and a Lyapunov-based design method. Our new nonlinear control approach broadens the class of systems under consideration over the existing results.

  • Degraded Frequency-Tuning Range and Oscillation Amplitude of LC-VCOs due to the Nonquasi-Static Effect in MOS Varactors

    Masataka MIYAKE  Daisuke HORI  Norio SADACHIKA  Uwe FELDMANN  Mitiko MIURA-MATTAUSCH  Hans Jurgen MATTAUSCH  Tatsuya OHGURO  Takahiro IIZUKA  Masahiko TAGUCHI  Shunsuke MIYAMOTO  

     
    PAPER

      Vol:
    E92-C No:6
      Page(s):
    777-784

    Frequency dependent properties of accumulation-mode MOS varactors, which are key elements in many RF circuits, are dominated by Non-Quasi-Static (NQS) effects in the carrier transport. The circuit performances containing MOS varactors can hardly be reproduced without considering the NQS effect in MOS-varactor models. For the LC-VCO circuit as an example it is verified that frequency-tuning range and oscillation amplitude can be overestimated by over 20% and more than a factor 2, respectively, without inclusion of the NQS effect.

  • A New Signature-Based Indexing Scheme for Efficient Trajectory Retrieval in Spatial Networks

    Jae-Woo CHANG  Jung-Ho UM  

     
    PAPER-Database

      Vol:
    E92-D No:6
      Page(s):
    1240-1249

    Even though it is very important to retrieve similar trajectories with a given query trajectory, there has been a little research on trajectory retrieval in spatial networks, like road networks. In this paper, we propose an efficient indexing scheme for retrieving moving object trajectories in spatial networks. For this, we design a signature-based indexing scheme for efficiently dealing with the trajectories of current moving objects as well as for maintaining those of past moving objects. In addition, we provide an insertion algorithm for storing the segment information of a moving object trajectory as well as a retrieval algorithm to find a set of moving objects whose trajectories match the segments of a query trajectory. Finally, we show that our signature-based indexing scheme achieves at least twice better performance on trajectory retrieval than the leading trajectory indexing schemes, such as TB-tree, FNR-tree, and MON-tree.

  • Space-Time Cyclic Delay Diversity Encoded Cooperative Transmissions for Multiple Relays

    Jin-Hyuk SONG  Jee-Hoon KIM  Hyoung-Kyu SONG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E92-B No:6
      Page(s):
    2320-2323

    Among spatial diversity schemes, orthogonal space-time block code (OSTBC) and cyclic delay diversity (CDD) have been widely studied for the cooperative wireless relaying system. However, conventional OSTBC and CDD cannot cope with change in the number of relays owing to low throughput or error performance. In this letter, we propose the space-time cyclic delay diversity (STCDD) scheme which provides good error performance and full rate. Simulation results show that bit error rate (BER) performance of the proposed STCDD is superior to that of OSTBC and CDD when sufficient quality of source-relay channels are guaranteed.

621-640hit(1376hit)